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Preface

Early childhood education has risen to the top of the national policy 
agenda with recognition that ensuring educational success and attainment 
must begin in the earliest years of schooling. There is now a substantial 
body of research to guide efforts to support young children’s learning. 
Over the past 15 years, great strides have been made in supporting young 
children’s literacy. This report summarizes the now substantial literature on 
learning and teaching mathematics for young children in hopes of catalyz-
ing a similar effort in mathematics.

The need for this study was recognized and championed by the Na-
tional Research Council’s (NRC’s) Mathematical Sciences Education Board 
following the publication in 2001 of Adding It Up: Helping Children Learn 
Mathematics. The tireless efforts of board member Sharon Griffin and 
then board director David Mandel led the design of this project, which is 
a comprehensive examination of the evidence base that can guide math-
ematics education (teaching and learning) for children ages 2 through 6. 
It represents the further extension of a portfolio of NRC reports focused 
on mathematics learning and teaching that includes Adding It Up: Help-
ing Children Learn Mathematics (2001); Eager to Learn: Educating Our 
Preschoolers (2001); How Students Learn: Mathematics in the Classroom 
(2005); and On E�aluating Curricular Effecti�eness: Judging the Quality 
of K-12 Mathematics E�aluations (2004).

The majority of support for this study was provided by the U.S. De-
partment of Health and Human Services, Administration for Children 
and Families, Office of Head Start. In particular, we thank Frank Fuentes, 
deputy director of the Office of Head Start, Administration for Children 
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and Families; Amanda Bryans, director of the Educational Development 
and Partnership Division, Office of Head Start, Administration for Children 
and Families; and Michele Plutro, education specialist, Office of Head Start, 
Administration for Children and Families. Additional funding was provided 
by the Office of Planning, Research, and Evaluation in the Administration 
for Children and Families, under the leadership of Mary Bruce Webb.

Other sponsors who contributed to the project include the Ewing 
Marion Kauffman Foundation, under the guidance of Margo Quiriconi and 
Karen Norwood, and the National Institute of Child Health and Human 
Development, under the leadership of Daniel Berch and James Griffin. In 
addition, the National Academies President’s Fund provided partial support 
for the study.

Our work was also advanced by the contributions of able consul-
tants and staff and the input of outside experts. Throughout the study 
process, the committee benefited from presentations or written input by 
individuals with a range of perspectives: W. Steven Barnett, National Insti-
tute for Early Education Research, Rutgers, The State University of New 
Jersey; Linda Bevilacqua, Core Knowledge Foundation; Toni Bickart, 
 Creative Curriculum, Teaching Strategies; Bruce D. McCandliss, Sackler 
Institute for Developmental Psychobiology, Weill Medical College of 
 Cornell University; Holly Rhodes, consultant; Elisa Rosman, consultant 
for the Georgetown University Center for Child and Human Develop-
ment; Lawrence Schweinhart, High/Scope Educational Research Founda-
tion; Catherine Snow, Harvard Graduate School of Education; and Prentice 
Starkey, Graduate School of Education, University of California, Berkeley.

The committee also thanks those who wrote papers that were invalu-
able to our discussions: Sarah Archibald, Consortium for Policy Research 
in Education, University of Wisconsin-Madison; Kathryn Bouchard Chval, 
College of Education, University of Missouri; Jason Downer, Center for the 
Advanced Study of Teaching and Learning, University of Virginia; Shalom 
Fisch, MediaKidz Research and Consulting; Michael Goetz, University of 
Wisconsin, Madison; Bridget K. Hamre, Curry School of Education, Uni-
versity of Virginia; Marilou Hyson, National Association for the Educa-
tion of Young Children and George Mason University; Carolyn R. Kilday, 
Graduate Student, Curry School of Education, University of Virginia; Pat 
McGuire, Graduate Student Curry Leadership Foundations and Policy, 
School of Education, University of Virginia; Barbara Reys, Department 
of Learning, Teaching, and Curriculum, University of Missouri; Catherine 
Scott-Little, Human Development and Family Studies Department, Uni-
versity of North Carolina, Greensboro; and John Switzer, Department of 
Learning, Teaching, and Curriculum, University of Missouri.

This report has been reviewed in draft form by individuals chosen 
for their diverse perspectives and technical expertise, in accordance with 
procedures approved by the Report Review Committee of the NRC. The 
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purpose of this independent review is to provide candid and critical com-
ments that will assist the institution in making its published report as sound 
as possible and to ensure that the report meets institutional standards for 
objectivity, evidence, and responsiveness to the study charge. The review 
comments and draft manuscript remain confidential to protect the integrity 
of the deliberative process.

We thank the following individuals for their review of this report: 
 Arthur Baroody, Curriculum and Instruction, University of Illinois, Urbana-
Champaign; Elena Bodrova, Mid-continent Research for Education and 
Learning, Lakewood, CO; Karen S. Cook, Department of Sociology, Insti-
tute for Research in the Social Sciences, Stanford University; Sharon A. 
Griffin, Department of Education, Clark University; Jacqueline A. Jones, 
Division of Early Childhood Education, New Jersey Department of Edu-
cation; Constance Kamii, Curriculum and Instruction, University of 
 Alabama; Michèle M. M. Mazzocco, Psychiatry and Behavioral Sciences, 
Johns Hopkins School of Medicine and Math Skills Development Project, 
 Kennedy Krieger West Campus, Baltimore, MD; Sally Moomaw, College of 
Education, Criminal Justice, and Human Services, University of Cincinnati; 
Donald G. Saari, Institute for Mathematical Behavioral Sciences, Univer-
sity of California, Irvine; Maria Shea Terrell, Department of Mathematics, 
Cornell University; and Karen L. Worth, Center for Science Education, 
Education Development Center, Inc., Newton, MA.

Although the reviewers listed above have provided many constructive 
comments and suggestions, they were not asked to endorse the conclusions 
or recommendations nor did they see the final draft of the report before 
its release. The review of this report was overseen by Jeremy Kilpatrick, 
Department of Mathematics and Science Education, University of Georgia, 
Athens, and Charles (Randy) Gallistel, Rutgers University, Rutgers Center 
for Cognitive Science, The State University of New Jersey. Appointed by 
the NRC, they were responsible for making certain that an independent 
examination of this report was carried out in accordance with institutional 
procedures and that all review comments were carefully considered. Re-
sponsibility for the final content of this report rests entirely with the author-
ing committee and the institution.

We are also grateful to the work of others at the NRC, including 
 Christine McShane, senior editor, Division of Behavioral and Social Sci-
ences and Education (DBASSE), whose work greatly improved the text of 
the report; Kirsten Sampson Snyder, DBASSE reports officer, who worked 
with us through several revisions of the report; and Yvonne Wise, DBASSE 
production editor, who managed the report through final publication. As 
well, we are thankful to those who assisted committee members with lit-
erature searches or background research, including Patricia Harvey, Julie 
Shuck, and Matthew Von Hendy, at the National Academies.

The committee appreciates the support provided by the Center for 
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Education, under the leadership of Patricia Morison. Taniesha Woods, the 
study director, provided invaluable support and guidance to the commit-
tee throughout the study. We could not have asked for a better colleague. 
Senior program assistant Mary Ann Kasper masterfully handled all the 
logistical aspects of this project, including our four committee meetings. 
We are also grateful for the leadership and support of Heidi Schweingruber, 
deputy director of the Board on Science Education, who provided much 
thoughtful counsel throughout this process and contributed substantially to 
editing the report in the final stages.

Christopher T. Cross, Chair
Committee on Early Childhood Mathematics
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Summary

Mathematics education has risen to the top of the national policy 
agenda as part of the need to improve the technical and scientific literacy 
of the American public. The new demands of international competition 
in the 21st century require a workforce that is competent in and comfort-
able with mathematics. There is particular concern about the chronically 
low mathematics and science performance of economically disadvantaged 
students and the lack of diversity in the science and technical workforce. 
Particularly alarming is that such disparities exist in the earliest years of 
schooling and even before school entry.

Recognizing the increasing importance of mathematics and encouraged 
by a decade of success in improving early literacy, the Mathematical Sci-
ences Education Board of the Center for Education at the National Research 
Council established the Committee on Early Childhood Mathematics. The 
committee was charged with examining existing research in order to de-
velop appropriate mathematics learning objectives for preschool children; 
providing evidence-based insights related to curriculum, instruction, and 
teacher education for achieving these learning objectives; and determining 
the implications of these findings for policy, practice, and future research.

The committee found that, although virtually all young children have 
the capability to learn and become competent in mathematics, for most the 
potential to learn mathematics in the early years of school is not currently 
realized. This stems from a lack of opportunities to learn mathematics ei-
ther in early childhood settings or through everyday experiences in homes 
and in communities. This is particularly the case for economically disad-
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vantaged children, who start out behind in mathematics and will remain so 
without extensive, high-quality early mathematics instruction.

In fact, well before first grade, children can learn the ideas and skills 
that support later, more complex mathematics understanding. There is ex-
pert consensus that two areas of mathematics are particularly important for 
young children to learn: (1) number, which includes whole number, opera-
tions, and relations; and (2) geometry, spatial thinking, and measurement. 
A rich body of research provides insight into how children’s proficiency 
develops in both areas and the instruction needed to support it. The com-
mittee used this evidence to develop research-based teaching-learning paths 
to guide policy and practice in early childhood education.

Examination of current standards, curricula, and instruction in early 
childhood education revealed that many early childhood settings do not 
provide adequate learning experiences in mathematics. The relative lack of 
high-quality mathematics instruction, especially in comparison to literacy, 
reflects a lack of attention to mathematics throughout the childhood educa-
tion system, including standards, curriculum, instruction, and the prepara-
tion and training of the teaching workforce.

For example, many widely used early childhood curricula do not pro-
vide sufficient guidance on mathematics pedagogy or content. When early 
childhood classrooms do have mathematics activities, they are often pre-
sented as part of an integrated or embedded curriculum, in which the 
teaching of mathematics is secondary to other learning goals. Emerging 
research indicates, however, that learning experiences in which mathematics 
is a supplementary activity rather than the primary focus are less effective 
in promoting children’s mathematics learning than experiences in which 
mathematics is the primary goal. Finally, education and training for most 
teachers typically places heavy emphasis on children’s social-emotional 
development and literacy, with much less attention to mathematics. In 
fact, academic activities such as mathematics can be a context in which 
social-emotional development and the foundations of language and literacy 
flourish.

As noted, opportunities to experience high-quality mathematics in-
struction are especially important for low-income children. These children, 
on average, demonstrate lower levels of competence with mathematics 
prior to school entry, and the gaps persist or even widen over the course 
of schooling. Providing young children with extensive, high-quality early 
mathematics instruction can serve as a sound foundation for later learning 
in mathematics and contribute to addressing long-term systematic inequities 
in educational outcomes.

The committee found that although the research to date about how 
young children develop and learn key concepts in mathematics has clear 
implications for practice, the findings are neither widely known nor imple-



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

SUMMARY �

mented by early childhood educators or those who teach them. To ensure 
that all children enter elementary school with the mathematical foundation 
they need for success requires that individuals throughout the early child-
hood education system—including the teaching workforce, curriculum de-
velopers, program directors, and policy makers—transform their approach 
to mathematics education in early childhood by supporting, developing, 
and implementing research-based practices and curricula.

RECOMMENDATIONS

Recommendation 1: A coordinated national early childhood mathemat-
ics initiative should be put in place to improve mathematics teaching 
and learning for all children ages 3 to 6.

A number of specific recommendations for action follow from this 
overarching recommendation. The specific steps and the individuals or or-
ganization that must be involved in enacting them are outlined below. We 
provide further guidance about how to enact these steps in Chapter 9.

Recommendation 2: Mathematics experiences in early childhood set-
tings should concentrate on (1) number (which includes whole num-
ber, operations, and relations) and (2) geometry, spatial relations, and 
measurement, with more mathematics learning time devoted to number 
than to other topics. The mathematical process goals should be inte-
grated in these content areas. Children should understand the concepts 
and learn the skills exemplified in the teaching-learning paths described 
in this report.

Recommendation 3: All early childhood programs should provide 
high-quality mathematics curricula and instruction as described in this 
report.

Recommendation 4: States should develop or revise their early child-
hood learning standards or guidelines to reflect the teaching-learning 
paths described in this report.

Recommendation 5: Curriculum developers and publishers should base 
their materials on the principles and teaching-learning paths described 
in this report.

Recommendation 6: An essential component of a coordinated national 
early childhood mathematics initiative is the provision of professional 
development to early childhood in-service teachers that helps them (a) 
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to understand the necessary mathematics, the crucial teaching-learning 
paths, and the principles of intentional teaching and curriculum and 
(b) to learn how to implement a curriculum.

Recommendation 7: Coursework and practicum requirements for early 
childhood educators should be changed to reflect an increased emphasis 
on children’s mathematics as described in the report. These changes 
should also be made and enforced by early childhood organizations 
that oversee credentialing, accreditation, and recognition of teacher 
professional development programs.

Recommendation 8: Early childhood education partnerships should 
be formed between family and community programs so that they are 
equipped to work together in promoting children’s mathematics.

Recommendation 9: There is a need for increased informal program-
ming, curricular resources, software, and other media that can be used 
to support young children’s mathematics learning in such settings as 
homes, community centers, libraries, and museums.
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Introduction and Research on Learning
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1

Introduction

For centuries, many students have learned mathematical knowledge—
whether the rudiments of arithmetic computation or the complexities of 
geometric theorems—without much understanding. . . . Of course, many 
students tried to make whatever sense they could of procedures such as 
adding common fractions or multiplying decimals. No doubt many stu-
dents noticed underlying regularities in the computations they were asked 
to perform. Teachers who themselves were skilled in mathematics might 
have tried to explain those regularities. But mathematics learning has often 
been more a matter of memorizing than of understanding.

Today it is vital that young people understand the mathematics they are 
learning. Whether using computer graphics on the job or spreadsheets at 
home, people need to move fluently back and forth between graphs, tables 
of data, and formulas. To make good choices in the marketplace, they must 
know how to spot flaws in deductive and probabilistic reasoning as well 
as how to estimate the results of computations. . . . Public policy issues of 
critical importance hinge on mathematical analyses. (pp. 15-16)

These words are from an earlier National Research Council (NRC) 
report called Adding It Up: Helping Children Learn Mathematics (National 
Research Council, 2001a). It focused on examining the evidence about 
school mathematics and outlining what it means to be mathematically 
proficient from prekindergarten to eighth grade. The report offers much to 
guide current policy and practice in elementary and middle schools across 
the nation. Yet the report also draws attention to the importance of what 
happens before children enter formal schooling: “Young children show a 
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remarkable ability to formulate, represent, and solve simple mathematical 
problems and to reason and explain their mathematical activities. They are 
positively disposed to do and to understand mathematics when they first 
encounter it” (p. 6).

However, not much attention has been paid historically to teaching 
mathematics to young children before they enter the period of formal 
schooling. This stems, at least in part, from generally negative attitudes 
about mathematics on the part of the American public as well as to beliefs 
that early childhood education should consist of a nurturing environment 
that promotes social-emotional development, with academic content pri-
marily focusing on language and literacy development. In fact, a majority 
of parents report that a positive approach to learning and language devel-
opment is more important for young children than mathematics (Cannon 
and Ginsburg, 2008). When asked which subject was more important for 
her child to learn and why, one mother said (p. 249):

Language. Definitely. I mean obviously they’re both [math and language] 
very important. But you can find people, even adults, who never learn 
math. I think that you could survive much better [without mathematics] 
than if you never learn language. I think communication is so important. 
If you could learn to be expressive, you could hire someone to do your 
math for you.

Families are agents of cultural transmission, which includes conveying at-
titudes about mathematics. Often, mathematics is not viewed as important 
to young children’s cognitive development and later academic success. Evi-
dence shows, however, that learning mathematics is vital for children’s early 
years and for later success in mathematics as well as better overall academic 
outcomes in such areas as literacy, science, and technology (e.g., Duncan 
et al., 2007; National Association for the Education of Young Children and 
National Council of Teachers of Mathematics, 2002).

In addition, early childhood teachers are often uncomfortable teaching 
mathematics (Clements and Sarama, 2007; Copley, 2004; Ginsburg et al., 
2006; Lee and Ginsburg, 2007a). Many teachers avoid teaching mathemat-
ics because of their own negative early experiences with mathematics. The 
quote below, by a pre-service teacher attending a top-ranked university, is 
illustrative:

Overall, my personal experiences with math have not been good. . . . 
Throughout [my] elementary [schooling] it was either you were right or 
wrong. . . . As a result, I found math very boring and confusing. I am not a 
natural math learner. . . . I do not like the idea of teaching math to others, 
because I feel like I am not competent enough to teach math. I remem-
ber how hard it was when I was teaching adding and subtracting to first 
graders, especially when some of them did not understand it. I panicked 
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when I made some mistakes myself in adding and subtracting. (Personal 
communication, comments by student of H. Ginsburg, Teachers College, 
Columbia University, September 2007.)

In recent years, however, interest in mathematics as a key aspect of 
early childhood education has increased across both the policy and the 
practice communities. In 2000, the National Council of Teachers of Math-
ematics (NCTM), in their revision of the 1989 standards for elementary 
and secondary school mathematics, included prekindergarten for the first 
time. Also in 2000, a conference of early childhood and mathematics edu-
cators was held to focus more explicitly on standards for preschool and 
kindergarten children (Clements, Sarama, and DiBiase, 2004). In 2002, 
Good Start, Grow Smart, an early childhood-focused White House initia-
tive, resulted in the linking of federal funding to the requirement that all 
states develop voluntary early learning guidelines in language, literacy, and 
mathematics. The now-suspended National Reporting System for assessing 
learning outcomes for children participating in Head Start programs, be-
gun in 2002, originally specified four areas of focus for assessment, one of 
which was early mathematical skills (the other three were language-related: 
comprehension of spoken English, vocabulary, and letter naming) (National 
Research Council, 2008). Also in 2002, the National Association for the 
Education of Young Children and the NCTM approved a joint position 
statement, “Early Childhood Math: Promoting Good Beginnings,” which 
included recommendations to guide both policy and practice.

In 2006, following on its efforts to improve language and literacy out-
comes for the children it serves, the Office of Head Start turned its attention 
to early mathematics. It convened a mathematics working group composed 
of parents, local staff, researchers, and other experts in early mathematics 
learning and has since moved forward on developing strategies for helping 
Head Start and Early Head Start programs support the early mathematics 
learning of infants, toddlers, and preschoolers.

LEARNING FROM THE RESEARCH

Clearly there is growing interest in including mathematics among the 
learning goals for young children and in improving the teaching of mathe-
matics in developmentally appropriate ways. Over the past several decades, 
significant investments have been made in research on early development 
and learning, much of which is ripe for examination and synthesis as it ap-
plies to early mathematics.

In the past decade, the NRC has uncovered and synthesized key aspects 
of the knowledge about learning and development in early childhood. In 
the reports From Neurons to Neighborhoods: The Science of Early Child-
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hood De�elopment (National Research Council and Institute of Medicine, 
2000) and Eager to Learn: Educating Our Preschoolers (National Research 
Council, 2001b) the NRC directed its attention to early childhood institu-
tions, their financing or lack of same, considerations of health and nutri-
tion, and the social, emotional, and cultural components of this territory 
as they also focused special attention on early literacy. The report Early 
Childhood Assessment: Why, What, and How (National Research Council, 
2008) identifies important outcomes for children from birth to age 5 and 
outlines the quality and purposes of developmental assessments. Although 
mathematics received attention to some degree in these studies, it was not 
a central focus of this work.

The NRC study that resulted in the report How People Learn (National 
Research Council, 1999) drew on a large body of research in cognition to 
offer a set of powerful findings about teaching and learning at all levels 
and all subjects that, since its publication, have rippled across the research 
community. The most recent follow-on publication, How Students Learn: 
History, Mathematics, and Science in the Classroom (National Research 
Council, 2005a), provides several concrete examples of how this research 
on student learning can translate into improved practice, including one 
example in early childhood mathematics. Some additional examples of 
research in this territory also surfaced in Mathematical and Scientific De-
�elopment in Early Childhood (National Research Council, 2005b), which 
captures the discussion at an NRC workshop. The previously mentioned 
report, Adding It Up (National Research Council, 2001a), synthesized the 
research on mathematics learning in prekindergarten through eighth grade 
and provided advice to educators, researchers, publishers, policy makers, 
and parents. Taken together, these prior initiatives have helped set the stage 
for an in-depth examination of early learning in mathematics.

THE COMMITTEE’S CHARGE

In order to synthesize and distill the key lessons from the relevant 
research, the NRC established the Committee on Early Childhood Math-
ematics in 2007. The majority of support for the study was provided by 
the Office of Head Start, under the auspices of the U.S. Department of 
Health and Human Services; supplementary funding was also provided 
by the National Institute of Child Health and Human Development, the 
Ewing Marion Kauffman Foundation, and the NRC. In recognition of the 
interdisciplinary nature of this work, the committee consists of experts in 
mathematics, psychology, neuroscience, early childhood education, and 
teacher education, as well as early childhood practitioners and policy mak-
ers. The committee worked on the study over an 18-month period.

The committee charge is as follows:
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To synthesize and analyze the past research on early childhood mathemat-
ics from a number of disciplinary fields, draw out the implications for 
policy and practice affecting young children as they move through the 
preschool years and begin formal schooling, and provide research-based 
guidance to increase the number of young children, especially vulnerable 
children, prepared to get off to a strong start in learning mathematics dur-
ing their first years of schooling. It is designed to capitalize on the research 
literature in the field and consider its various implications for policy mak-
ers, practitioners and parents.

The committee will assemble the pertinent research literature from the 
multiple disciplines that have focused attention on the teaching and learn-
ing of mathematics by young children. They will analyze this literature 
in order to develop (1) appropriate mathematics learning objectives for 
preschool students; and (2) critical evidence-based insights related to cur-
riculum, instruction, and teacher education for achieving these learning 
objectives. Finally, they will determine the implications of these findings 
for policy, practice, parent-child relations, future data collection and fur-
ther research. 

See Box 1-1 for questions that the committee might address as part of 
its charge.

BOX 1-1 
Questions the Committee Might Address

•	 	What	does	existing	research	tell	us	about	what	preschool	children	can	know	
about	mathematics,	and	how	they	develop	this	knowledge?

•	 	Learning	of	which	mathematical	knowledge,	skills,	and	concepts	 in	 the	pre-
school	years	 increases	 the	 likelihood	of	successful	mathematics	 learning	 in	
school	and	beyond?

•	 	What	do	international	comparisons	with	respect	to	both	preschoolers	and	pri-
mary	grades	students	tell	us	about	the	nature	of	early	mathematics	learning	
and	prospects	for	its	improvement	in	the	United	States?	What	approaches	in	
other	countries	with	respect	to	interventions	and	ongoing	support	could	use-
fully	be	applied	here?

•	 	What	policies	and	practices	best	lay	the	foundation	for	successful	mathematics	
learning?

•	 	What	 can	 parents,	 preschool	 teachers,	 and	 other	 adults	 who	 interact	 with	
young	children	do	to	promote	their	mathematical	development?

•	 	How	can	we	support	the	mathematical	development	of	preschool	teachers	so	
that	they	will	be	able	to	promote	young	children’s	mathematical	development?

•	 	How	can	further	research	in	cognitive	development	and	preschool	education	
be	focused	to	address	issues	that	will	lead	to	improvement	in	children’s	math-
ematical	proficiency?
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The committee cast its net widely to examine as much of the rel-
evant research as possible. For some issues, the evidence base was limited: 
Throughout the report, we attempt to recognize and acknowledge the 
limitations of the evidence base and, at the end of the report, suggest some 
areas in which the scope and quality of research can be strengthened. The 
committee was not able to pursue in depth the entire array of possible issues 
related to mathematics education during early childhood; for example, we 
lacked the time, resources, and expertise to do a comprehensive interna-
tional comparative analysis of early childhood education in mathematics. 
We do discuss the literature on the role of language as a shared cultural 
experience that shapes children’s mathematical learning. In addition, nei-
ther program evaluation nor accountability, both of which are important 
to children’s early mathematics education programs, is discussed at length 
in the report.

In addressing the charge, although the committee did examine research 
related to the development of number and space concepts for the very 
early years (i.e., infancy through age 3), our focus was on children ages 
3 through 6 and early mathematics education—which includes learning, 
teaching, teacher education, and curriculum. The committee paid special 
attention to the learning and teaching practices that underscore mathemati-
cal development in children from age 3 through the end of kindergarten. 
This age range was chosen as the focus because it provides children with 
key cognitive and social development opportunities associated with success-
ful entry into formal schooling. Evidence demonstrates that preschool-age 
children are excited about learning and enjoy activities that develop their 
mathematics competencies (Gelman, 1980; Ginsburg et al., 2006; National 
Research Council, 2001b; Saxe et al., 1987); this period is thus critical for 
maintaining and enhancing motivation to learn, especially for children from 
disadvantaged backgrounds, because enriching early learning experiences 
can enable them to begin kindergarten on a more level footing with their 
more advantaged peers.

The committee has put particular emphasis on the need to translate 
research on early childhood mathematics into practice for all children. 
Still, young children from disadvantaged backgrounds show lower levels 
of mathematics achievement than children from middle-class and higher 
status backgrounds (Clements and Sarama, 2007; Ginsburg and Russell, 
1981; Hughes, 1986; Jordan, Huttenlocher, and Levine, 1994; Saxe et al., 
1987; Starkey and Klein, 2000; Starkey, Klein, and Wakeley, 2004). The 
committee paid particular attention to issues of equity in early mathemat-
ics education throughout the report because of evidence indicating that, 
whereas all young children can benefit from intentional mathematics in-
struction, children who are at risk because of particular life circumstances 
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(e.g., low socioeconomic status) will fall further behind their more affluent 
peers over the course of their schooling if they do not receive more intensive 
mathematics teaching (Starkey and Klein, 2000).

The committee held four meetings, which provided opportunities for 
discussions with practitioners, researchers, and other experts in the field of 
early childhood education. These discussions helped committee members 
develop a better understanding of the history and positions in the various 
stakeholder communities as well as the reasoning behind their positions. 
Our analyses draw on a variety of sources. The committee examined rel-
evant summary data produced by government agencies and professional 
organizations. We reviewed a wide body of interdisciplinary research and 
commissioned a number of research synthesis papers by experts. Often, 
practitioners and policy makers state that the research community is too 
far removed from what is actually happening in the classroom, causing 
researchers to make recommendations that cannot be realistically imple-
mented. The committee is keenly aware of this concern, and thus we 
attempt to put forth here policy recommendations that are grounded in 
research as well as the action steps necessary to implement them.

THE EARLY CHILDHOOD EDUCATION 
AND CARE DELIVERY SYSTEM

One important issue that influenced the committee’s thinking about 
recommendations for policy and practice is the multifaceted and complex 
nature of the early childhood education “system.” Before the beginning of 
formal schooling, children spend their days in a wide variety of settings. 
If they are not cared for at home by their parents or relatives, children 
typically receive care through the country’s early education and child care 
system, which consists of a loosely sewn-together patchwork of different 
kinds of programs and providers that vary widely in their educational mis-
sion and whether they are explicitly designed to provide education services. 
Data from the nationally representative Early Childhood Longitudinal 
Study, Birth (ECLS-B) cohort show that about 60 percent of preschool-age 
children are in center-based care (including Head Start settings), about 21 
percent of children are in home-based care arrangements, and about 20 
percent have no formal child care arrangements (see Table 1-1) (Jacobson 
Chernoff, McPhee, and Park, 2007).

In addition, about 43 percent of children younger than age 6 live in 
low-income families (Chau and Douglas-Hall, 2007). The high cost of 
high-quality early education and care is unaffordable for many low- and 
middle-income families (Zigler, Gilliam, and Jones, 2006). For example, 
the average annual cost for full-day center-based care for preschool-age 
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TABLE 1-1 Children Participating in Regular Nonparental Education 
and Early Care, 2005-2006 (percentage)

Characteristic

Home-Based
Center-
Based

Multiple 
Arrangements

No Regular 
Nonparental 
Arrangement

Relative 
Care

Nonrelative 
Care

Non-
Head 
Start

Head 
Start

Total 13 8 45 13 2 20

Child Race/Ethnicity

 White, 
non-Hispanic

11 9 53 7 2 18

 Black, 
non-Hispanic

14 4 37 25 3 16

 Hispanic 16 6 31 19 1 27
 Asian, 

non-Hispanic
16 3 55 6 2a 18

 American 
Indian and 
Alaska 
Native, 
non-Hispanic

14 5 29 31 1a 20

 Other, 
non-Hispanic

19 9 40 12 2a 18

Socioeconomic Statusb

 Lowest 
20 percent

15 5 22 25 2 31

 Middle 
60 percent

15 7 44 13 2 20

 Highest 
20 percent

6 11 71 1 2 10

NOTE: Percentages do not sum to 100 because of rounding error.
 aStandard error is more than one third as large as estimate.
 bSocioeconomic status (SES) is a measure of social standing. This SES variable reflects the 
socioeconomic status of the household at the time of the preschool parent interview in 2005. 
The components used to create the measure of SES were as follows: father/male guardian’s 
education; mother/female guardian’s education; father/male guardian’s occupation; mother/
female guardian’s occupation; and household income. SES was collapsed first into quintiles, 
then into a 20/60/20 percent distribution by collapsing the middle three quintiles.
SOURCE: Jacobson Chernoff, McPhee, and Park (2007).
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children ranges from $3,794 in Mississippi to $10,920 in the District 
of Columbia (National Association of Child Care Resource and Referral 
Agencies, 2007).

An increase in women’s participation in the workforce has also 
contributed to the demand for high-quality preschool and child care 
 (National Research Council, 2001b). Over the past four and a half 
 decades, women’s participation in the workforce has grown from 38 per-
cent in 1960 to 60 percent in 2002 (U.S. Census Bureau, 2003), with 
59 percent of mothers of 4-year-olds working outside the home (Jacobson 
Chernoff, McPhee, and Park, 2007).

Head Start is a large, federally funded early childhood program that 
promotes school readiness for economically disadvantaged children and 
families; the program provides comprehensive child development services 
(education, health, nutritional, social, and other services). In fiscal year 
2007, the program served 908,412 children, most of whom were 3- and 
4-year-olds (87 percent). The reach of the program is large—in 2007 
there were over 49,000 Head Start classrooms located in over 18,000 
 centers—which makes its policies and practices influential in early child-
hood education.

Of the 60 percent of children in the United States who attend center-
based care, approximately 22 percent are enrolled in state-funded preschool, 
which is the largest source of public prekindergarten (Barnett et al., 2007). 
Increasingly, states are moving toward state-funded preschool education to 
provide early education and care for children, particularly for those whose 
families would otherwise not be able to afford it. Georgia and Oklahoma, 
for example, have public preschool programs that enroll (if parents choose) 
4-year-olds across the state (Barnett et al., 2007). Voluntary universal pre-
school is one policy option that has been suggested as a way to provide 
opportunities for all children, regardless of family income, to receive high-
quality early education and care (Zigler et al., 2006).

However, some have argued against voluntary universal preschool in 
favor of programs that target low-income children (e.g., Ceci and Papierno, 
2005; Fuller, 2007). Ceci and Papierno (2005), for example, suggest that 
targeted programs are more effective in terms of financial and educational 
benefits because they use (often limited) early education funds to help the 
most disadvantaged children.

Revisions to legislation and new policy initiatives have also shaped 
early childhood education policy in recent years. For example, beginning 
with the National Education Goals of 1990, the No Child Left Behind 
(NCLB) Act of 2001, and continuing through the 2007 reauthorization of 
the Head Start Act, interest in young children’s preparation for school has 
increased. Central aims of these pieces of legislation are to support young 
children’s development and learning so that they make a successful transi-
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tion into kindergarten and to provide equitable educational opportunities 
for all students.

With the implementation of NCLB, many school districts began to 
place a major emphasis on the academic success of students in the early 
elementary grades. NCLB testing requirements do not begin until children 
reach third grade, but implications from the law exist for lower grades and 
preschool programs. The emphasis that has been placed on accountability 
for early childhood learning has caused concern among researchers, parents, 
and early education stakeholders because of the strong focus on academic 
development rather than the combination of academic and social-emotional 
development. This tension is not new; the early childhood education com-
munity has grappled with the notion that preschool programs should be 
more focused on academics, in contrast to the idea that they should focus 
instead on children’s social-emotional development. The consequences of 
accountability systems have brought an increased emphasis and disagree-
ments about what should be the focus of early education and care.

In addition to NCLB, Good Start, Grow Smart, President Bush’s plan 
to strengthen early learning (White House, n.d.), promoted accountability 
for preschool children’s learning outcomes in literacy and mathematics and 
also called for program improvements in language and literacy develop-
ment. A major premise of this initiative was to close the achievement gap 
between socioeconomic and racial/ethnic groups. Until recently, the focus of 
these efforts was targeted at improving literacy and language development 
(e.g., Reading First and Early Reading First). However, with recent research 
clearly demonstrating the importance of early childhood mathematics to 
later success in reading and mathematics, policy makers are beginning to see 
the value of investing in early childhood mathematics. As discussed more 
fully in Chapter 8, policies aimed at changing or improving the education 
and learning of 3- to 6-year-olds still need to consider the diverse range 
of settings and characteristics of those who will do the teaching in these 
settings.

ORGANIZATION OF THE REPORT

The report is organized into four parts. Part I focuses on the research 
on learning and summarizes the nearly 30 years of research demonstrating 
that young children are able to learn foundational mathematics. As these 
chapters show, preschool-age children possess a well-developed understand-
ing of informal mathematics (Ginsburg, Klein, and Starkey, 1998), and they 
are able to learn complex mathematics before school entry (Clements and 
Sarama, 2007; Ginsburg et al., 2006).

Chapter 2 provides an overview of the important mathematical thinking 
processes and mathematical ideas for the early childhood period, summa-
rizing the areas in which children need foundational learning opportuni-
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ties. Chapter 3 reviews the evidence about how young children’s everyday 
mathematics learning begins in infancy with the proximal environments in 
which they develop. More specifically, it focuses on cognitive development 
and includes a discussion of the research on infancy. Chapter 4 examines 
individual variation in children’s mathematics learning and performance, 
with particular attention to mathematics learning disabilities. The chapter 
also considers sources of individual variation, such as familial practices, and 
group variation, such as socioeconomic status and race/ethnicity.

Part II focuses on a sequence of milestones for children in the core 
areas of number (including whole number, relations, and operations) and 
geometry and measurement. Chapter 5 focuses on number and operations, 
and Chapter 6 on geometry and measurement.

In Part III the committee turns to topics of implementation of math-
ematics learning and teaching in the classroom context. Chapter 7 covers 
the research concerning standards, curriculum, teaching, and formative 
assessment. Chapter 8 focuses on the early childhood workforce and exam-
ines issues of teacher education and professional development.

Part IV contains the committee’s synthesis of its major conclusions and 
outlines the recommendations that flow from these conclusions, focusing 
particularly on what changes are needed to improve the quality of math-
ematics learning for young children. The committee also lays out an agenda 
for future research.

Appendix A is a glossary that defines terminology used throughout 
the report and Appendix B supplements Chapter 6. Appendix C presents 
biographical sketches of committee members and staff.
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2

Foundational Mathematics Content

Mathematics provides a powerful means for understanding and analyz-
ing the world. Mathematical ways of describing and representing quantities, 
shapes, space, and patterns help to organize people’s insights and ideas 
about the world in systematic ways. Some of these mathematical systems 
have become such a fundamental part of people’s everyday lives—for ex-
ample, counting systems and methods of measurement—that they may 
not recognize the complexity of the ideas underpinning them. In fact, the 
mathematical ideas that are suitable for preschool and the early grades 
reveal a surprising intricacy and complexity when they are examined in 
depth. At the deepest levels, they form the foundations of mathemat-
ics that have been studied extensively by mathematicians over centuries 
(e.g., see Grattan-Guinness, 2000) and remain a current research topic in 
mathematics.

In this chapter, we provide an overview of the mathematical ideas that 
are appropriate for preschool and the early grades and discuss some of the 
more complex mathematical ideas that build on them. These foundational 
ideas are taken for granted by many adults and are not typically examined 
in high school or college mathematics classes. Thus, many people with 
an interest in early childhood education may not have had adequate op-
portunities in their preparation to examine these ideas. Chapters 5 and 
6 examine these ideas again in some detail, from the perspective of how 
children come to understand them and the conceptual connections they 
make in doing so.

This chapter has four sections. The first two describe mathematics for 
young children in two core areas: (1) number and (2) geometry and mea-
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surement. These ideas, which are important preparation for school and for 
life, are also genuinely mathematical, with importance from a mathema-
tician’s perspective. Moreover, they are interesting to children, who enjoy 
engaging with these ideas and exploring them.

The third section describes mathematical process goals, both general 
and specific. The general process goals are used throughout mathematics, 
in all areas and at every level, including in the mathematics for very young 
children. The specific process goals are common to many topics in math-
ematics. These process goals must be kept in mind when considering the 
teaching and learning of mathematics with young children.

The fourth section describes connections across the content described 
in the first two sections as well as to important mathematics that children 
study later in elementary school. These connections help to demonstrate 
the foundational nature of the mathematics described in the first two 
sections.

NUMBER CONTENT

Number is a fundamental way of describing the world. Numbers are 
abstractions that apply to a broad range of real and imagined situations—
five children, five on a die, five pieces of candy, five fingers, five years, five 
inches, five ideas. Because they are abstract, numbers are incredibly ver-
satile ways of explaining the world. “Yet, in order to communicate about 
numbers, people need representations—something physical, spoken, or 
written” (National Research Council, 2001, p. 72). Understanding num-
ber and related concepts includes understanding concepts of quantity and 
relative quantity, facility with counting, and the ability to carry out simple 
operations. We group these major concepts into three core areas: number, 
relations, and operations. Box 2-1 summarizes the major ideas in each core 
area. Developing an understanding of number, operations, and how to 
represent them is one of the major mathematical tasks for children during 
the early childhood years.

The Number Core

The number core concerns the list of counting numbers 1, 2, 3, 4, 5, . . . 
and its use in describing how many things are in collections. There are 
two distinctly different ways of thinking about the counting numbers: on 
one hand, they form an ordered list, and, on the other hand, they describe 
cardinality, that is, how many things are in a set. The notion of 1-to-1 cor-
respondence bridges these two views of the counting numbers and is also 
central to the notion of cardinality itself. Another subtle and important 
aspect of numbers is the way one writes (and says) them using the base 10 
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BOX 2-1 
Overview of Number, Relations, and Operations Core

The Number Core: Perceive, Say, Describe/Discuss, and Construct Numbers

Cardinality:	 giving	 a	 number	 word	 for	 the	 numerosity	 of	 a	 set	 obtained	 by	
perceptual	 subitizing	 (immediate	 recognition	of	1	 through	3)	or	 conceptual	
subitizing	 (using	a	number	composition/decomposition	 for	 larger	numerosi-
ties),	counting,	or	matching.

Number word list:	knowing	how	to	say	the	sequence	of	number	words.
1-to-1 counting correspondences:	counting	objects	by	making	the	1-to-1	time	

and	spatial	correspondences	that	connect	a	number	word	said	in	time	to	an	
object	located	in	space.

Written number symbols:	reading,	writing,	and	understanding	written	number	
symbols	(1,	2,	3,	etc.).

Coordinations across the above,	such	as	using	the	number	word	list	in	count-
ing	and	counting	to	find	the	cardinality	of	a	set.

The Relations Core: Perceive, Say, Describe/Discuss, and Construct the 
Relations More Than, Less Than, and Equal To on Two Sets by

Using	general	perceptual,	 length,	density	strategies	to	find	which	set	 is	more	
than,	less	than,	or	equal	to	another	set,	and	then	later.

Using	the	unitizing	count	and	match	strategies	to	find	which	set	is	more	than,	
less	than,	or	equal	to	another	set,	and	then	later.

Seeing	the	difference	between	the	two	sets,	so	the	relational	situation	becomes	
the	additive	comparison	situation	listed	below.

The Operations Core: Perceive, Say, Describe/Discuss, and Construct the 
Different Addition and Subtraction Operations (Compositions/Decomposi-
tions of Numbers)

Change situations: addition	change	plus	situations	(start	+	change	gives	the	
result)	 and	 subtraction	 change	 minus	 situations	 (start	 −	 change	 gives	 the	
result).

Put together/take apart situations: put	together	two	sets	to	make	a	total;	take	
apart	a	number	to	make	two	addends.

Compose/decompose numbers: Move	back	and	forth	between	the	total	and	
its	composing	addends:	“I	see	3.	I	see	2	and	1	make	3.”

Embedded number triads: Experience	a	total	and	addends	hiding	inside	it	as	
a	related	triad	in	which	the	addends	are	embedded	within	the	total.

Additive comparison situations: Comparing	 two	 quantities	 to	 find	 out	 how	
much	 more	 or	 how	 much	 less	 one	 is	 than	 the	 other	 (the	 Relations	 Core	
precedes	this	situation).
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system. The top section of Box 2-1 provides an overview of the number 
core from the perspective of children’s learning; this is discussed in more 
detail in Chapter 5. Here we discuss the number core from a mathematical 
perspective, as a foundation for the discussion of children’s learning.

Numbers Quantify: They Describe Cardinality

Numbers tell “how many” or “how much.” In other words, numbers 
communicate how many things there are or how much of something there 
is. One can use numbers to give specific, detailed information about collec-
tions of things and about quantities of stuff. Initially, some toy bears in a 
basket may just look like “some bears,” but if one knows there are seven 
bears in the basket, one has more detailed, precise information about the 
collection of bears.

Numbers themselves are an abstraction of the notion of quantity be-
cause any given number quantifies an endless variety of situations. We use 
the number 3 to describe the quantity of three ducks, three toy dinosaurs, 
three people, three beats of a drum, and so on. We can think of the number 
3 as an abstract, common aspect that all these limitless examples of sets of 
three things share.

How can one grasp this common aspect that all sets of three things 
share? At the heart of this commonality is the notion of 1-to-1 corre-
spondence. Any two collections of three things can be put into 1-to-1 
 correspondence with each other. This means that the members of the first 
collection can be paired with the members of the second collection in such 
a way that each member of the first collection is paired with exactly one 
member of the second collection, and each member of the second collection 
is paired with exactly one member of the first collection. For example, each 
duck in a set of three ducks can be paired with a single egg from a set of 
three eggs so that no two ducks are paired with the same egg, no two eggs 
are paired with the same duck, and no ducks or eggs remain unpaired.

The Number List

The counting numbers can be viewed as an infinitely long and ordered 
list of distinct numbers. The list of counting numbers starts with 1, and 
every number in the list has a unique successor. This creates a specific or-
der to the counting numbers, namely 1, 2, 3, 4, 5, 6, . . . . It would not be 
correct to leave a number out of the list, nor would it be correct to switch 
the order in which the list occurs. Also, every number in the list of count-
ing numbers appears only once, so it would be wrong to repeat any of the 
numbers in the list.

The number list is useful because it can be used as part of 1-to-1 ob-
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ject counting to tell how many objects are in a collection. Although the 
number of objects in small collections (up to 3 or 4) can be recognized 
immediately—this is called subitizing—in general, one uses the number list 
to determine the number of objects in a set by counting. Counting allows 
one to quantify exactly collections that are larger than can be immediately 
recognized. To count means to list the counting numbers in order, usually 
starting at 1, but sometimes starting at another number, as in 5, 6, 7, . . . . 
(Other forms of counting include “skip counting,” in which one counts 
every second, or third, or fourth, etc., number, such as 2, 4, 6, . . . , and 
counting backward, as in 10, 9, 8, 7, . . . .)

Although adults take it for granted because it is so familiar, the con-
nection between the list of counting numbers and the number of items in 
a set is deep and subtle. It is a key connection that children must make. 
There are also subtleties and deep ideas involved in saying and writing the 
number list, which adults also take for granted because their use is so com-
mon. Because of the depth and subtlety of ideas involved in the number list 
and its connection to cardinality, and because these ideas are central to all 
of mathematics, it is essential that children become fluent with the number 
list (see Box 2-2).

Connecting the number list with cardinality. In essence, counting is a 
way to make a 1-to-1 correspondence between each object (in which the 

BOX 2-2 
The Importance of Fluency with the Number List

	 All	of	the	work	on	the	relations/operation	core	in	kindergarten	serves	a	double	
purpose.	It	helps	children	solve	larger	problems	and	become	more	fluent	in	their	
Level	1	solution	methods.	It	also	helps	them	reach	fluency	with	the	number	word	
list	in	addition	and	subtraction	situations,	so	that	the	number	word	list	can	become	
a	representational	tool	for	use	in	the	Level	2	counting	of	solution	methods.	To	get	
some	sense	of	this	process,	try	to	add	or	subtract	using	the	alphabet	list	instead	
of	the	number	word	sequence.	For	counting	on,	you	must	start	counting	with	the	
first	addend	and	then	keep	track	of	how	many	words	are	counted	on.	Many	adults	
cannot	start	counting	within	the	alphabet	from	D	or	from	J	because	they	are	not	
fluent	with	this	 list.	Nor	do	they	know	their	fingers	as	letters	(How	many	fingers	
make	F?),	so	they	cannot	solve	D	+	F	by	saying	D	and	then	raising	a	finger	for	
each	letter	said	after	D	until	they	have	raised	F	fingers.	It	 is	these	prerequisites	
for	counting	on	 that	kindergarten	children	are	 learning	as	 they	count,	add,	and	
subtract	 many,	 many	 times.	 Of	 course	 as	 they	 do	 this,	 they	 will	 also	 begin	 to	
remember	 certain	 sums	 and	 differences	 as	 composed/decomposed	 triads	 (as	
number facts).
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objects can be any discrete thing, from a doll, to a drumbeat, to the idea 
of a unicorn) and a prototypical set, namely a set of number words. For 
example, when a child counts a set of seven bears, the child makes a 1-to-1 
correspondence between the list 1, 2, 3, 4, 5, 6, 7 and the collection of 
bears. To count the bears, the child says the number word list 1, 2, 3, 4, 
5, 6, 7 while pointing to one new bear for each number. As a result, each 
bear is paired with one number, each number is paired with one bear, and 
there are no unpaired numbers or bears once counting is completed. The 
pairing could be carried out in many different ways (starting with any one 
of the bears and proceeding to any other bear next, and so on), but any 
single way of making such a 1-to-1 correspondence by counting establishes 
that there are seven bears in the set.

A key characteristic of object counting is that the last number word has 
a special status, as it specifies the total number of items in a collection. For 
example, when a child counts a set of seven bears, the child counts 1, 2, 3, 
4, 5, 6, 7, pointing to one bear for each number. The last number that is 
said, 7, is not just the last number in the list, but also indicates that there 
are seven bears in the set (i.e., cardinality of the set). Thus when counting 
the 7 bears, the counter shifts from a counting reference (to 7 as the last 
bear when counting) to a cardinal reference when referring to 7 as the 
number of bears in all. Counting therefore provides another way to grasp 
the abstract idea that all sets of a fixed number of things share a common 
characteristic—that when one counts two sets that have the same number 
of objects, the last counting word said will be the same for both.

Another key observation about counting is that, for any given number 
in the list of counting numbers, the next number in the list tells how many 
objects are in a set that has one more object than do sets of the given num-
ber of objects. For example, if there are five stickers in a box and one more 
sticker is put into the box, then one knows even without counting them all 
again that there will now be six stickers in the box, because 6 is the next 
number in the counting list. Generally each successive counting number 
describes a quantity that is one more than the quantity that the previous 
number describes.

In a sense, then, counting is adding: Each counting number adds one 
more to the previous collection (see Figure 2-1). Of course, if one counts 
backward, then one is subtracting. These observations are essential for 
children’s early methods of solving addition and subtraction problems. 
Also, each step in the counting process can be thought of as describing the 
total number of objects that have been counted so far.

The number word list and written number symbols in the base 10 place-
value system. Each number in the number list has a unique spoken name 
and can be represented by a unique written symbol. The names and symbols 
for the initial numbers in the list have been passed along by tradition, but 
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the English names of the first 10 (or so) counting numbers and the symbols 
of the first 9 counting numbers are arbitrary and could have been differ-
ent. For example, instead of the English word “three,” one could be using 
“bik” or “Russell” or any other word, such as the words for “three” in 
other languages. Instead of the symbol 3, one could use a symbol that looks 
completely different.

The list of counting numbers needs to go on and on in order to count 
ever larger sets. So the problem is how to give a unique name to each 
number. Different cultures have adopted many different solutions to this 
problem (e.g., Menninger, 1958/1969; see Chapter 4 of this volume for a 
discussion of counting words in different languages). The present very ef-
ficient solution to this problem was not obvious and was in fact a significant 
achievement in the history of human thought (Menninger, 1958/1969). 
Even though the first nine counting numbers, 1, 2, 3, 4, 5, 6, 7, 8, 9, are 
represented by distinct, unrelated symbols, some mechanism for continu-
ing to list numbers without resorting to creating new symbols indefinitely 
is desirable.

The decimal system (or base 10 system) is the ingenious system used 
today to write (and say) counting numbers. The decimal system allows one 
to use only the 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to write any counting 
number as a string of digits (such a written representation of a number is 
often called a numeral).

FIGURE 2-1 Each counting number describes a quantity that is one more than the 
previous number describes.
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3 :
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The system is called a base 10 system because it uses 10 distinct digits 
and is based on repeated groupings by 10. The use of only 10 digits to 
write any counting number, no matter how large, is achieved by using place 
�alue. That is, the meaning of a digit in a written number depends (in a very 
specific way) on its placement. The details about using the decimal system 

BOX 2-3 
Using the Decimal System to Write the 

List of Counting Numbers

	 Each	of	 the	first	nine	counting	numbers	 (or	number	words)	“one,	 two,	 .	 .	 .	 ,	
nine,”	requires	only	one	digit	to	write,	1,	2,	.	.	.	,	9.	Each	digit	stands	for	that	many	
things—in	other	words,	 that	many	“ones,”	as	 indicated	at	 the	 top	of	Figure	2-2.	
Each	of	these	digits	is	viewed	as	being	in	the	“ones	place.”

FIGURE 2-2 Decimal	system	1.

0              1                2                3                 4                5                6                 7                8                9

10           11             12             13             14            15            16             17            18             19

20          21            22            23              24           25             26             27             28             29

Developing shorthand
pictures for a group
of ten:

Figure 2-2
R01420

	 The	next	counting	number,	ten,	requires	two	digits	to	write.	The	1	stands	for	1	
ten	and	the	0	stands	for	0	ones,	and	10	stands	for	the	combined	amount	in	1	ten	
and	0	ones.	This	way	of	describing	and	writing	the	number	ten	requires	thinking	of	
it	as	a	single	group	of	ten—in	other	words,	as	a	new	entity	in	its	own	right,	which	
is	created	by	joining	10	separate	things	into	a	new	coherent	whole,	as	indicated	
in	the	figure	by	the	way	10	dots	are	shown	grouped	to	form	a	single	unit	of	10.

	 In	each	of	 the	next	 two-digit	counting	numbers,	11,	12,	13,	14,	15,	 .	 .	 .	 ,	20,	
21,	22,	.	.	 .	 ,	30,	31,	.	.	 .	 ,	97,	98,	99,	the	digit	on	the	right	stands	for	that	many	
ones,	so	one	says	this	digit	is	in	the	“ones	place,”	and	the	digit	on	the	left	stands	
for	 that	many	 tens,	so	one	says	 it	 is	 in	 the	“tens	place”;	 the	number	stands	 for	
the	combined	amount	in	those	tens	and	ones.	For	example,	in	37,	the	3	stands	
for	3	tens,	the	7	stands	for	7	ones,	and	37	stands	for	the	combined	amount	in	3	
tens	and	7	ones.	Notice	that	from	20	on,	the	way	one	says	number	words	follows	
a	 regular	pattern	 that	fits	with	 the	way	 these	numbers	are	written.	But	 the	way	
one	says	11	through	19	does	not	fit	this	pattern.	In	fact,	13	through	19	are	said	
backward,	because	the	ones	digit	is	said	before	the	tens	digit	is	indicated.
	 The	number	99	is	the	last	two-digit	counting	number,	and	it	stands	for	the	com-
bined	amount	in	9	tens	and	9	ones	(see	Figure	2-3).	The	next	counting	number	
will	be	the	number	of	dots	there	are	when	one	more	dot	is	added	to	the	dots	on	
the	left	of	the	figure.	This	additional	dot	“fills	up”	a	group	of	ten,	as	indicated	in	the	
middle	of	the	figure.	Now	there	are	10	tens,	but	there	isn’t	a	digit	that	can	show	
this	many	 tens	 in	 the	 tens	place.	So	 the	10	 tens	are	bundled	 together	 to	make	
a	new	coherent	whole,	as	indicated	on	the	right	in	Figure	2-3,	which	is	called	a	
hundred.	From	0	to	9	hundreds	can	be	recorded	in	the	place	to	the	left	of	the	tens	
place,	which	is	called	the	hundreds	place.	So	the	next	counting	number	after	99	
is	written	as	100,	in	which	the	1	stands	for	1	hundred,	and	the	0s	stand	for	0	tens	
and	0	ones.

FIGURE 2-3 Decimal	system	2.

99                         How to write 10 tens?                              100

+ 1

Figure 2-3
R01420

	 The	decimal	system	has	a	systematic	way	to	make	new	larger	units	by	bun-
dling	10	previously	made	units	and	recording	the	new	unit	one	place	to	the	left	of	
the	given	unit’s	place.	Just	as	10	ones	make	a	new	unit	of	10,	which	is	recorded	to	
the	left	of	the	ones	place,	10	tens	make	a	new	unit	of	a	hundred,	which	is	recorded	
to	 the	 left	of	 the	 tens	place,	and	10	hundreds	make	a	new	unit	of	a	 thousand,	
which	is	recorded	to	the	left	of	the	hundreds	place.	This	pattern	continues	on	and	
on	to	new	places	on	the	left.
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to write the list of counting numbers are given in Box 2-3: A key idea is 
to create larger and larger units, which are the values of places farther and 
farther to the left, by taking the value of each place to be 10 times the value 
of the previous place to its right. One can think of doing this by bundling 
together 10 of the previous place’s value. The greater and greater values 

BOX 2-3 
Using the Decimal System to Write the 

List of Counting Numbers

	 Each	of	 the	first	nine	counting	numbers	 (or	number	words)	“one,	 two,	 .	 .	 .	 ,	
nine,”	requires	only	one	digit	to	write,	1,	2,	.	.	.	,	9.	Each	digit	stands	for	that	many	
things—in	other	words,	 that	many	“ones,”	as	 indicated	at	 the	 top	of	Figure	2-2.	
Each	of	these	digits	is	viewed	as	being	in	the	“ones	place.”
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	 The	next	counting	number,	ten,	requires	two	digits	to	write.	The	1	stands	for	1	
ten	and	the	0	stands	for	0	ones,	and	10	stands	for	the	combined	amount	in	1	ten	
and	0	ones.	This	way	of	describing	and	writing	the	number	ten	requires	thinking	of	
it	as	a	single	group	of	ten—in	other	words,	as	a	new	entity	in	its	own	right,	which	
is	created	by	joining	10	separate	things	into	a	new	coherent	whole,	as	indicated	
in	the	figure	by	the	way	10	dots	are	shown	grouped	to	form	a	single	unit	of	10.

	 In	each	of	 the	next	 two-digit	counting	numbers,	11,	12,	13,	14,	15,	 .	 .	 .	 ,	20,	
21,	22,	.	.	 .	 ,	30,	31,	.	.	 .	 ,	97,	98,	99,	the	digit	on	the	right	stands	for	that	many	
ones,	so	one	says	this	digit	is	in	the	“ones	place,”	and	the	digit	on	the	left	stands	
for	 that	many	 tens,	so	one	says	 it	 is	 in	 the	“tens	place”;	 the	number	stands	 for	
the	combined	amount	in	those	tens	and	ones.	For	example,	in	37,	the	3	stands	
for	3	tens,	the	7	stands	for	7	ones,	and	37	stands	for	the	combined	amount	in	3	
tens	and	7	ones.	Notice	that	from	20	on,	the	way	one	says	number	words	follows	
a	 regular	pattern	 that	fits	with	 the	way	 these	numbers	are	written.	But	 the	way	
one	says	11	through	19	does	not	fit	this	pattern.	In	fact,	13	through	19	are	said	
backward,	because	the	ones	digit	is	said	before	the	tens	digit	is	indicated.
	 The	number	99	is	the	last	two-digit	counting	number,	and	it	stands	for	the	com-
bined	amount	in	9	tens	and	9	ones	(see	Figure	2-3).	The	next	counting	number	
will	be	the	number	of	dots	there	are	when	one	more	dot	is	added	to	the	dots	on	
the	left	of	the	figure.	This	additional	dot	“fills	up”	a	group	of	ten,	as	indicated	in	the	
middle	of	the	figure.	Now	there	are	10	tens,	but	there	isn’t	a	digit	that	can	show	
this	many	 tens	 in	 the	 tens	place.	So	 the	10	 tens	are	bundled	 together	 to	make	
a	new	coherent	whole,	as	indicated	on	the	right	in	Figure	2-3,	which	is	called	a	
hundred.	From	0	to	9	hundreds	can	be	recorded	in	the	place	to	the	left	of	the	tens	
place,	which	is	called	the	hundreds	place.	So	the	next	counting	number	after	99	
is	written	as	100,	in	which	the	1	stands	for	1	hundred,	and	the	0s	stand	for	0	tens	
and	0	ones.

FIGURE 2-3 Decimal	system	2.

99                         How to write 10 tens?                              100

+ 1

Figure 2-3
R01420

	 The	decimal	system	has	a	systematic	way	to	make	new	larger	units	by	bun-
dling	10	previously	made	units	and	recording	the	new	unit	one	place	to	the	left	of	
the	given	unit’s	place.	Just	as	10	ones	make	a	new	unit	of	10,	which	is	recorded	to	
the	left	of	the	ones	place,	10	tens	make	a	new	unit	of	a	hundred,	which	is	recorded	
to	 the	 left	of	 the	 tens	place,	and	10	hundreds	make	a	new	unit	of	a	 thousand,	
which	is	recorded	to	the	left	of	the	hundreds	place.	This	pattern	continues	on	and	
on	to	new	places	on	the	left.
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of the places allow any number, no matter how large, to be expressed as a 
combination of between 0 and 9 of each place’s value. In this way, every 
counting number can be expressed in a unique way as a numeral made of 
a string of digits. (See Howe, 2008, for a further discussion of the decimal 
system and place value.)

Even though most countries around the world now use this system of 
written numerals, they still use their own list of counting words that relate 
closely, or not so closely, to the written system of numerals. English and 
other European lists of counting words have various aspects that do not 
fit the decimal system so well and that create difficulties in learning the 
system. These, and ways to compensate for these difficulties, are discussed 
in Chapter 4.

The Relations/Operations Core

Numbers do not exist in isolation. They make up a coherent system 
in which numbers can be compared, added, subtracted, multiplied, and 
divided. Just as numbers are abstractions of the notion of quantity, the 
relations “less than,” “greater than,” and “equal to” and the operations 
of addition, subtraction, multiplication, and division are abstractions of 
comparing, combining, and separating quantities. These relations and op-
erations apply to a wide variety of problems. The middle and bottom sec-
tions of Box 2-1 are an overview of the relations core and the operations 
core for young children (which concerns only addition and subtraction, not 
multiplication or division).

Comparing

In some cases it is visually evident that there are more things in one col-
lection than in another, such as in the case of the two sets of beads shown 
at the top of Figure 2-4. But in other cases it is not immediately clear which 
collection (if either) has more items in it.

A basic way to compare two collections of objects is by direct matching 
(as in the middle of Figure 2-4). If a child has a collection of black beads 
and another collection of white beads, and if these collections are placed 
near each other, the child can place each black bead with one and only one 
white bead. If there is at least one extra white, then there are more whites; 
if at least one extra black, then more blacks. And if none is left over, then 
the two groups have the same number (although one may not know and 
does not need to know exactly what number it is).

When direct matching is not possible, a child can count the number of 
beads in two collections to determine which collection (if either) has more 
beads or if they both have the same number of beads. A key observation 
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about using counting to compare is that a number that is said later in the 
counting word list corresponds to a collection that has a greater number 
of objects than does a collection corresponding to a number earlier in the 
sequence. For example, one knows that there are more beads in a col-
lection of eight black beads than there are in a collection of seven white 
beads because 8 occurs later in the counting list than 7 (see the bottom of 
Figure 2-4). Counting thus provides a more advanced way to compare sets 
of things than direct matching because it relies on knowledge about how 
numbers compare. Counting is also a more powerful way to compare sets 
of things than direct matching because it allows sets that are not in close 
proximity to be compared.

A key point about comparing collections of objects is that counting 
can be used to do so, and it relies on the link between the number list and 
cardinality: Numbers later in the list describe greater cardinalities than 
do numbers earlier in the list. Finding out which collection is more than 
another collection is easier than determining exactly how many more that 
collection has than the other, which can be formulated as an addition or 
subtraction problem. This more specific version of comparison is discussed 
in the next section.

FIGURE 2-4 Comparing.

Visually, we can tell that 
there are more white
beads than black beads.

Are there more black beads
or more white beads, or
is it the same number?

Compare by matching:
There are more black beads.

“one, two, three, four,
five, six, seven”

“one, two, three, four,
five, six, seven, eight”

Compare by counting:
We say eight after we say
seven, so eight black beads 
are more than seven white
beads.

8 7

Figure 2-4
R01420
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Addition and Subtraction Story Problems and Situations

Addition and subtraction are used to relate amounts before and after 
combining or taking away, to relate amounts in parts and totals, or to say 
precisely how two amounts compare. Story problems and situations that 
can be formulated with addition or subtraction occur in a wider variety 
than just the simplest and most common “add to” and “take away” story 
problems. Methods that young children can use to solve addition and sub-
traction story problems, again, rely on a fluent link between the number list 
and cardinality. Later methods (in first grade or so) also rely on decompos-
ing numbers and on an initial understanding of the base 10 system, namely 
that the numbers 11 through 19 can be viewed as a ten and some ones.

Box 2-4 describes the different types of story problems or situations 
that can be formulated with addition or subtraction. Viewed from a more 

BOX 2-4 
Types of Addition/Subtraction Situations

Change Plus and Change Minus Situations

	 Change	 situations	 have	 three	 quantitative	 steps	 over	 time:	 start,	 change,	
result.	Most	children	before	first	grade	solve	only	problems	in	which	the	result	is	
the	unknown	quantity.	 In	first	grade,	any	quantity	can	be	 the	unknown	number.	
Unknown	start	problems	are	more	difficult	than	unknown	change	problems,	which	
are	more	difficult	than	unknown	result	problems.

Change	plus:	Start	quantity	+	change	quantity	=	result	quantity:	“Two	bunnies	
sat	on	the	grass.	One	more	bunny	hopped	there.	How	many	bunnies	are	on	
the	grass	now?”

Change	minus:	Start	quantity	−	change	quantity	=	result	quantity:	“Four	apples	
were	 on	 the	 table.	 I	 ate	 two	 apples.	 How	 many	 apples	 are	 on	 the	 table	
now?”

Put Together/Take Apart Situations

	 In	these	situations,	the	action	is	often	conceptual	instead	of	physical	and	may	
involve	a	collective	term	like	“animal”:	“Jimmy	has	one	horse	and	two	dogs.	How	
many	animals	does	he	have?”
	 In	put	together	situations,	two	quantities	are	put	together	to	make	a	third	quan-
tity:	“Two	red	apples	and	one	green	apple	were	on	the	table.	How	many	apples	
are	on	the	table?”
	 In	take	apart	situations,	a	total	quantity	is	taken	apart	to	make	two	quantities:	
“Grandma	has	 three	 flowers.	How	many	can	she	put	 in	her	 red	 vase	and	how	
many	in	her	blue	vase?”
	 These	situations	are	decomposing/composing	number	situations	in	which	chil-
dren	shift	from	thinking	of	the	total	to	thinking	of	the	addends.	Working	with	differ-

ent	numbers	helps	them	learn	number	triads	related	by	this	total-addend-addend	
relationship,	 which	 they	 can	 use	 when	 adding	 and	 subtracting.	 Eventually	 with	
much	experience,	 children	move	 to	 thinking	of	embedded	number	situations	 in	
which	 one	 considers	 the	 total	 and	 the	 two	 addends	 (partners)	 that	 are	 “hiding	
inside”	the	total	simultaneously	instead	of	needing	to	shift	back	and	forth.
	 Equations	 with	 the	 total	 alone	 on	 the	 left	 describe	 take	 apart	 situations:	 	
3	=	2	+	1.	Such	equations	help	children	understand	that	the	=	sign	does	not	always	
mean	makes	or	results in	but	can	also	mean	is the same number as.	This	helps	
with	algebra	later.

Comparison Situations

	 Children	first	learn	the	comparing	relations	equal	to,	more	than,	and	less	than	
for	two	groups	of	things	or	two	numbers.	They	find	out	which	one	is	bigger	and	
which	one	is	smaller	(or	if	they	are	equal)	by	matching	and	by	counting.
	 Eventually	first	grade	children	come	to	see	the	third	quantity	involved	in	a	more	
than/less	than	situation:	the	amount	more	or	less	(the	difference).	Children	then	
can	solve	additive	comparison	problems	in	which	a	larger	quantity	 is	compared	
to	a	smaller	quantity	to	find	the	difference.	Children	may	write	different	equations	
to	show	such	comparisons	and	may	also	still	solve	by	matching	or	counting.	As	
with	the	other	addition	and	subtraction	situations,	any	of	the	three	quantities	can	
be	unknown.	The	 language	 involved	 in	such	situations	 is	complex	because	 the	
comparing	sentence	gives	two	kinds	of	information.	“Julie	has	six	more	than	Lucy”	
says	both	that	“Julie	has	more	than	Lucy”	and	that	the	amount	more	is	six.	This	
is	a	difficult	linguistic	structure	for	children	to	understand	and	to	say.

NOTE:	 Researchers	 use	 different	 names	 for	 these	 types	 of	 addition	 and	 subtraction	 situ-
ations,	 and	 some	 finer	 distinctions	 can	 be	 made	 within	 the	 categories.	 However,	 there	 is	
widespread	agreement	about	the	basic	types	of	problem	situations	despite	the	use	of	differ-
ent	terminology.
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advanced perspective, most of these situations can be formulated in a natu-
ral way with an equation of the form

 A + B = C or A − B = C

in which two of the three numbers in the equation are known and the 
problem is to determine the other number that makes the equation true. 
The types of situations that are naturally formulated with these equations 
are change plus and change minus situations, put together situations, and 
comparison situations.

In change plus and change minus situations, there is a starting quan-
tity (A), an amount by which this quantity changes (B), and the resulting 
quantity (C). Problems in which A and B are the known amounts and C 
is to be determined are the classic, most readily recognized addition and 

BOX 2-4 
Types of Addition/Subtraction Situations

Change Plus and Change Minus Situations

	 Change	 situations	 have	 three	 quantitative	 steps	 over	 time:	 start,	 change,	
result.	Most	children	before	first	grade	solve	only	problems	in	which	the	result	is	
the	unknown	quantity.	 In	first	grade,	any	quantity	can	be	 the	unknown	number.	
Unknown	start	problems	are	more	difficult	than	unknown	change	problems,	which	
are	more	difficult	than	unknown	result	problems.

Change	plus:	Start	quantity	+	change	quantity	=	result	quantity:	“Two	bunnies	
sat	on	the	grass.	One	more	bunny	hopped	there.	How	many	bunnies	are	on	
the	grass	now?”

Change	minus:	Start	quantity	−	change	quantity	=	result	quantity:	“Four	apples	
were	 on	 the	 table.	 I	 ate	 two	 apples.	 How	 many	 apples	 are	 on	 the	 table	
now?”

Put Together/Take Apart Situations

	 In	these	situations,	the	action	is	often	conceptual	instead	of	physical	and	may	
involve	a	collective	term	like	“animal”:	“Jimmy	has	one	horse	and	two	dogs.	How	
many	animals	does	he	have?”
	 In	put	together	situations,	two	quantities	are	put	together	to	make	a	third	quan-
tity:	“Two	red	apples	and	one	green	apple	were	on	the	table.	How	many	apples	
are	on	the	table?”
	 In	take	apart	situations,	a	total	quantity	is	taken	apart	to	make	two	quantities:	
“Grandma	has	 three	 flowers.	How	many	can	she	put	 in	her	 red	 vase	and	how	
many	in	her	blue	vase?”
	 These	situations	are	decomposing/composing	number	situations	in	which	chil-
dren	shift	from	thinking	of	the	total	to	thinking	of	the	addends.	Working	with	differ-

ent	numbers	helps	them	learn	number	triads	related	by	this	total-addend-addend	
relationship,	 which	 they	 can	 use	 when	 adding	 and	 subtracting.	 Eventually	 with	
much	experience,	 children	move	 to	 thinking	of	embedded	number	situations	 in	
which	 one	 considers	 the	 total	 and	 the	 two	 addends	 (partners)	 that	 are	 “hiding	
inside”	the	total	simultaneously	instead	of	needing	to	shift	back	and	forth.
	 Equations	 with	 the	 total	 alone	 on	 the	 left	 describe	 take	 apart	 situations:	 	
3	=	2	+	1.	Such	equations	help	children	understand	that	the	=	sign	does	not	always	
mean	makes	or	results in	but	can	also	mean	is the same number as.	This	helps	
with	algebra	later.

Comparison Situations

	 Children	first	learn	the	comparing	relations	equal	to,	more	than,	and	less	than	
for	two	groups	of	things	or	two	numbers.	They	find	out	which	one	is	bigger	and	
which	one	is	smaller	(or	if	they	are	equal)	by	matching	and	by	counting.
	 Eventually	first	grade	children	come	to	see	the	third	quantity	involved	in	a	more	
than/less	than	situation:	the	amount	more	or	less	(the	difference).	Children	then	
can	solve	additive	comparison	problems	in	which	a	larger	quantity	 is	compared	
to	a	smaller	quantity	to	find	the	difference.	Children	may	write	different	equations	
to	show	such	comparisons	and	may	also	still	solve	by	matching	or	counting.	As	
with	the	other	addition	and	subtraction	situations,	any	of	the	three	quantities	can	
be	unknown.	The	 language	 involved	 in	such	situations	 is	complex	because	 the	
comparing	sentence	gives	two	kinds	of	information.	“Julie	has	six	more	than	Lucy”	
says	both	that	“Julie	has	more	than	Lucy”	and	that	the	amount	more	is	six.	This	
is	a	difficult	linguistic	structure	for	children	to	understand	and	to	say.

NOTE:	 Researchers	 use	 different	 names	 for	 these	 types	 of	 addition	 and	 subtraction	 situ-
ations,	 and	 some	 finer	 distinctions	 can	 be	 made	 within	 the	 categories.	 However,	 there	 is	
widespread	agreement	about	the	basic	types	of	problem	situations	despite	the	use	of	differ-
ent	terminology.
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subtraction problems. Reversing the action in change minus or change plus 
situations shows the connection between subtraction and addition. For ex-
ample, if Whitney had 9 dinosaurs and gave away 3 dinosaurs, how many 
dinosaurs did Whitney have left? This problem can be formulated with the 
subtraction equation, 9 − 3 = ? Starting with the dinosaurs Whitney has 
left, if she gets the 3 dinosaurs back, she will have her original 9 dinosaurs, 
which can be expressed with the addition equation ? + 3 = 9. Subtraction 
problems can thus be reformulated in terms of addition, which connects 
subtraction to addition.

In put together situations, there are two parts, A and B, which together 
make a whole amount, C. These situations are formulated in a natural way 
with an addition equation, A + B = C.

Change plus, change minus, and put together problems in which either 
A or B (the start quantity, the change quantity, or one of the two parts) is 
unknown involve an interesting reversal between the operation that formu-
lates the problem and the operation that can be used to solve the problem 
from a more advanced perspective. For example, consider this “change 
unknown” problem: “Matt had 5 cards. After he got some more cards, he 
had 8. How many cards did Matt get?” This problem can be formulated 
with the addition equation 5 + ? = 8. Although young children will solve 
this problem by adding on to 5 until they reach 8 (perhaps with actual 
cards or other objects), older children and adults may solve the problem by 
subtracting, 8 − 5 = 3, which uses the opposite operation than the addition 
equation that was used to formulate the problem.

Comparison situations concern precise comparisons between two dif-
ferent quantities, A and C. Instead of simply saying that A is greater than, 
less than, or equal to C, the situation concerns the exact amount by which 
the two quantities differ. If C is B more than A, then the situation can be 
formulated with the equation A + B = C. If C is B less than A, then the 
situation can be formulated with the equation A − B = C. To consider this 
precise difference, B, requires one to conceptually create a collection that is 
not physically present separately in the situation. This difference is either 
that part of the larger collection that does not match the smaller collection, 
or it is those objects that must be added to the smaller collection to match 
the larger collection. Of course, these matches can be done by counting and 
with specific numbers rather than just by matching. Note that these situa-
tions are called additive comparison situations even when formulated with 
subtraction (A − B = C when C is B less than A) to distinguish them from 
multiplicative comparison situations, which can be formulated in terms of 
multiplication or division. Students solve multiplicative comparison prob-
lems in the middle and later elementary grades.

In take apart situations, a total amount, C, is known and the problem 
is to find the ways to break the amount into two parts (which do not have 
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to be equal). Take apart situations are most naturally formulated with an 
equation of the form

 C = A + B

in which C is known and all the possible combinations of A and B that 
make the equation true are to be found. There are usually many different 
As and Bs that make the equation true.

GEOMETRY/MEASUREMENT CONTENT

Geometry and measurement provide additional, powerful systems for 
describing, representing, and understanding the world. Both support many 
human endeavors, including science, engineering, art, and architecture. 
 Geometry is the study of shapes and space, including two-dimensional 
(2-D) and three-dimensional (3-D) space. Measurement is about determin-
ing the size of shapes, objects, regions, quantities of stuff, or quantifying 
other attributes. Through their study of geometry and measurement, chil-
dren can begin to develop ways to mentally structure the spaces and objects 
around them. In addition, these provide a context for children to further 
develop their ability to reason mathematically.

Every 3-D object or 2-D shape, even very simple ones, has multiple 
aspects that can be attended to: the overall shape, the particular parts and 
features of the object or shape, and the relationships among these parts 
and with the whole object or shape. In determining the size of a shape or 
object, one must first decide on which particular aspect or measurable at-
tribute to focus.

Space (both 3-D and 2-D) could be viewed initially as an empty, un-
structured whole, but objects that are placed or moved within the space 
begin to structure it. The beginnings of the Cartesian structure of space, a 
central idea in mathematics, are seen when square tiles are placed in neat 
arrays to form larger rectangles and when cubical blocks are stacked and 
layered to make larger box-shaped structures. These are also examples of 
composing and decomposing shapes and objects more generally. Compos-
ing and decomposing shapes and objects are part of a foundation for later 
reasoning about fractions and about area and volume.

Viewing or imagining an object from different perspectives in space 
and moving or imagining how to move an object through space to fit in a 
particular spot links spatial relations with the parts and features of objects 
and shapes.

Just as numbers are an abstraction of quantity, the ideal, theoretical 
shapes (2-D and 3-D) of geometry are an abstraction of their approximate 
physical versions. The angles in a rectangular piece of paper aren’t exactly 
right angles, the edges aren’t perfectly straight line segments, and the paper, 
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no matter how thin, has a thickness to it that makes it a solid 3-D shape 
rather than only 2-D. Measurements of actual physical objects are never 
exact, either. Even so, valid reasoning about ideal geometric shapes and 
ideal theoretical measurements can be aided with approximate physical 
shapes and measurements.

Measurement

In its most basic form, measurement is the process of determining the 
size of an object. But the size of an object can be described in different ways, 
depending on the attribute one chooses. For example, the size of a tower 
made of cube-shaped blocks might be described by the height of the tower 
(a length) or in terms of the number of blocks in the tower (a volume). The 
size of the floor of a room that is covered in square tiles can be described 
in terms of the number of tiles on the floor (an area). The most important 
measurable attributes in mathematics are length, area, and volume.

To measure a quantity (with respect to a given measurable attribute, 
such as length, area, or volume), a unit must be chosen. Once a unit is cho-
sen, the size of an object (with respect to the given measurable attribute) 
is the number of those units it takes to make (the chosen attribute of) the 
object.

For length, a stick, for example, 1 foot long, could be chosen to be 
a unit. With respect to that unit of length, the length of a toy train is the 
number of those sticks (all identical) needed to lay end to end alongside the 
train from the front to the end.

For area, a square tile, such as a tile that is 1 inch by 1 inch, could be 
chosen to be a unit. With respect to that unit of area, the area of a rectan-
gular tray is the number of those tiles (all identical) it takes to cover the tray 
without gaps or overlaps. Although squares need not be used for units of 
area, they make especially useful units because they line up in neat rows and 
columns and fill rectangular regions completely without gaps or overlaps.

For volume, a cube-shaped block, such as a block that is 1 inch by 1 
inch by 1 inch, could be chosen to be a unit. With respect to that unit of 
volume, the volume of a box is the number of those cubes (all identical) 
it takes to fill the box without any gaps. Although cubes need not be used 
for units of volume, they make especially useful units because they line up 
in neat rows and columns and stack in neat layers to fill box shapes com-
pletely without gaps.

Once a unit has been chosen, a measurement is a number of those 
units (e.g., 3 inches, 6 square inches, 12 cubic inches). So measurement is 
a generalization of cardinality, which describes how many things are in a 
collection. For young children, measurements will generally be restricted to 
whole numbers, but measurement is a natural context in which fractions 
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arise. To fill a bucket with sand, a child might pour in 4 full cups of sand 
and another cup that is only half full of sand, so that the volume of the 
bucket is approximately 4½ cups.

An important but subtle idea about units, which children learn gradu-
ally, is that when measuring a given object, the larger the unit used to mea-
sure, the smaller the total number of units. For example, suppose there are 
two sizes of sticks to use as units of length: short sticks and longer sticks. 
More short sticks than long ones are needed to measure the same length. 
In other words, there is an inverse relation between the size of a measuring 
unit and the number of units needed to measure some characteristic.

Young children may also not grasp the importance of using standard 
units, which allow one to compare objects that are widely separated in 
space or time (see Chapter 3 for further discussion).

2-D Shapes

Shapes found in nature, such as flowers, leaves, tree trunks, and rocks, 
are complex, intricate, and 3-D rather than 2-D. In contrast, the familiar 
2-D shapes studied in geometry, such as triangles, rectangles, and circles, 
are relatively simple. Compared with most shapes in the natural world, 
these shapes are relatively easy to draw or create and also to describe and 
analyze. Many manufactured objects, such as tabletops and appliances, 
have parts that are approximate triangles, rectangles, or circles. Many 
shapes in the natural world are approximate combinations of parts of 
these simpler geometric shapes. For example, a birch leaf might look like a 
triangle joined to a half-circle.

Although geometric shapes can be described and discussed informally 
and children can simply be told the names of some prototypical examples 
of these shapes (for ease of reference and discussion), these shapes also have 
mathematical definitions, which teachers should know.

Parts and Features of 2-D Shapes

Geometric shapes have parts and features that can be observed and 
analyzed. The shapes all have an “inside region” and an “outer boundary.” 
Distinguishing the inside region of a 2-D shape from its outer boundary 
is an especially important foundation for understanding the distinction 
between the perimeter and area of a shape in later grades. Except for 
circles, the outer boundary of the common 2-D geometric shapes consists 
of straight sides, and the nature of these sides and their relationships to 
each other are important characteristics of a shape. One can attend to the 
number of sides and the relative length of the sides: Are all the sides of the 
same length, or are some longer than others? Where two sides meet, there 
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is a corner point or vertex (plural: vertices). One interesting observation is 
that the number of vertices is the same as the number of sides. One can at-
tend to how “pointy” a shape is at its vertex. In this case, one is attending 
to the angle formed by the sides that meet at the vertex. In some shapes, all 
the angles are the same, such as rectangles. In some shapes, some angles are 
the same and others are different, such as a rhombus that is not a square. 
The study of geometry is not only about seeing shapes as wholes; it’s about 
finding and analyzing their properties and features.

Additional Characteristics of 2-D Shapes Beyond 
Their Defining Characteristics

In studying shapes, young children’s attention will be drawn to the 
many different characteristics and features of a given shape. But from a 
more advanced standpoint, mathematicians have made definitions of shapes 
precise and spare by selecting only some of the characteristics of a shape as 
defining characteristics. For example, the definition of a triangle is a 2-D 
shape with three straight sides. A triangle also has three vertices and three 
angles, but these are not mentioned in the definition of triangle. Similarly, 
the opposite sides in a rectangle are the same length, but this is not men-
tioned in the definition of rectangle. Young children, however, can observe 
and describe these additional properties of shapes. For example, when one 
folds a rectangle out of paper by folding right angles, one can see that the 
opposite sides of the rectangle are the same length. The rectangle wasn’t 
constructed with the explicit intent of making opposite sides the same 
length, yet it turns out that way. Similarly, if one joins four sticks end to end 
to make a quadrilateral and if the sticks were chosen so that the opposite 
sides are the same length, one can see that the opposite angles are also the 
same. Although the shape wasn’t constructed with the explicit intent of 
making opposite angles the same, it nevertheless turns out that way.

3-D Shapes

The common simple geometric 3-D shapes are cubes, prisms, cylinders, 
pyramids, cones, and spheres. Many common objects are approximate ver-
sions of these ideal, theoretical shapes. For example, a building block is a 
rectangular prism, and a party hat can be in the shape of a cone. As with 
2-D shapes, the study of 3-D shapes is not only about seeing these shapes 
as wholes and learning their names, but also about finding and analyzing 
their properties and features.

The 3-D geometric shapes have parts and features that can be observed. 
The shapes all have an “inside” and an “outer surface.” The outer surface 
may consist of several parts. For example, the outer surface of a prism can 
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consist of rectangles. If the outer surface of a 3-D shape consists of flat 
surfaces, these are often called faces. For example, a long wooden building 
block has two faces at each end that are small rectangles and four faces 
around the middle that are long rectangles. Faces are joined along straight 
edges, and edges meet at points called vertices. Children might observe 
that some shapes (like that building block) have pairs of faces on opposite 
sides that are the same (congruent). Children might also observe that some 
shapes, like cylinders (like a pole or a can), cones (like a party hat), and 
spheres (like a ball), have outer surfaces that are not flat.

Although the outer surface of a 3-D shape is usually visible, unless one 
cuts the shape open, or the shape is made of clear plastic, or the shape is 
hollow and a face can be removed to look inside, one must usually imagine 
and visualize the inside. One exception is rooms, which are often (roughly) 
in the shape of a rectangular prism, and which one experiences from the 
inside. Distinguishing the inside of a 3-D shape from its outer surface is an 
especially important foundation for understanding the distinction between 
the surface area and volume of a shape in later grades.

Composing and Decomposing Shapes

Just as 10 ones can be composed to make a single unit of 10, shapes 
can also be composed to make new, larger shapes. And just as a 10 can 
be decomposed into 10 ones, so too shapes can be decomposed to make 
new, smaller shapes. Figure 2-5 presents a few examples of relationships 
among shapes obtained by composing and decomposing shapes based on 
equilateral triangles. Figure 2-6 shows relationships among shapes obtained 
by composing and decomposing rectangles.

Composing and decomposing 2-D shapes is an important foundation 
for understanding area in later grades. In particular, viewing rectangles as 

FIGURE 2-5 Relationships among shapes based on equilateral triangles.

A few relationships among shapes 
based on equilateral triangles

Figure 2-5
R01420
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composed of rows and columns of squares, as illustrated in Figure 2-6, is 
key to understanding areas of rectangles.

Likewise, composing and decomposing 3-D shapes is an important 
foundation for understanding volume in later grades. In particular, viewing 
rectangular prisms as composed of layers of rows and columns of cubes is 
key to understanding volumes of rectangular prisms (see Figure 2-7). Also, 
reasoning about fractions often takes place in a context of reasoning about 
decomposing shapes into pieces.

Composition and decomposition is discussed in greater detail in the 
section on mathematical connections across content areas and to later 
mathematics.

Motion, Relative Location, and Spatial Structuring

Part of the study of geometry is the analysis of both 2-D and 3-D 
space. A flat tabletop or piece of paper (imagined to extend infinitely in all 

FIGURE 2-6 Relationships among rectangles.

Viewing a rectangle as composed of/decomposed into rectangular 
rows or columns, which is related to viewing the rectangle as 
rows or columns of squares:

Figure 2-6
R01420
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directions) is a model for 2-D space. The space around one is a model for 
3-D space. For young children, the study of space begins with movement 
through space and with describing relative location in space.

Space is oriented by relative location. Think of one object as at a fixed 
location in 3-D space. Another object may be above or below the fixed 
object, which indicates relative location along a vertical axis (line). Another 
object may be in front of or behind a fixed object, or it may be to the left 
or right of a fixed object. These two descriptions indicate relative location 
along two distinct (and perpendicular) horizontal axes (lines). A related 
way to begin to structure space is to join squares into neat arrays of rows 
and columns for 2-D space and to stack cubes in layers of rows and col-
umns for 3-D space.

Although objects can be moved through space in many different ways, 
in 2-D space (think of a 2-D shape on a tabletop) there are some special 
motions that are of particular interest in advanced geometry that are also 
accessible to young children. Using elementary school terminology, these 
motions are called slides, flips, and turns (and in more advanced settings 
they are called translations, reflections, and rotations).

A slide moves a shape in a single direction for a specified distance 
without turning the shape. A flip reflects the shape across a line (so that 
the top and bottom of the shape become reversed). A turn rotates the shape 
around a fixed point with a specified amount of turning (e.g., a half turn or 

FIGURE 2-7 Viewing a rectangular box as composed of layers of rows and 
columns.

2 layers, each layer
could also be decomposed
into rows or columns.

Figure 2-7
R01420
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a quarter turn). (Technically, the center point of rotation need not be the 
center of the shape or even within the shape, although for young children 
it will be chosen that way.)

MATHEMATICAL PROCESS GOALS

In addition to coming to understand the specific mathematical con-
cepts discussed so far, children need to develop proficiency in the reasoning 
processes used in mathematics. In this section we describe two categories 
of mathematical processes: (1) general mathematical reasoning processes, 
which are central in every content area and at every level of mathematics, 
and (2) specific mathematical reasoning processes, which weave through 
many different content areas. Note that many of the specific reasoning 
processes were already touched on in the discussions of number, geom-
etry, and measurement. In fact, these specific processes represent powerful, 
cross-cutting ideas that connect multiple concepts, procedures, or problems 
and can help children begin to see coherence across topics in mathemat-
ics. One major goal of early education should be to stimulate and foster 
mathematical reasoning.

General Mathematical Reasoning Processes

The National Council of Teachers of Mathematics (NCTM) identified 
five process standards essential for meaningful and substantive mathematics 
learning and teaching (National Council of Teachers of Mathematics, 2000): 
(1) representing (including analyzing representations mathematically and 
visualizing internally), (2) problem solving, (3) reasoning, (4) connecting, 
and (5) communicating. These processes are vehicles for children to deepen, 
extend, elaborate, and refine their thinking and to explore ideas and lines of 
reasoning. According to NCTM, these processes are to be continually inter-
woven throughout the teaching and learning of mathematics content—even 
at the preschool level (see Chapters 5 and 6 for further discussion).

Representing is central in mathematics. Mathematics at every level uses 
simplified pictures or diagrams to represent a situation and subject it to 
mathematical analysis. For example, a child hears the story of The Three 
Bears. She forms a mental image of the three, with the papa bear largest 
in size, the mama bear next, and then the baby bear. She draws a crude 
picture of the three, or perhaps uses stick figures, or even lines. All of these 
are representations—the mental image, the picture, the stick figures, and the 
lines. The child can use the representations to reason about the objects and 
to explore ideas about size. Is the mama bear smaller than the papa bear? Is 
she also bigger than the baby bear? How can she be both bigger and smaller 
at the same time? Much later, the student can represent this situation as 
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A > B and B > C and reason that, if this is the case, then A > C. Here the 
representations are mathematical in the conventional sense. But when used 
to understand a situation quantitatively or geometrically, images and simple 
drawings are no less mathematical than are such representations as written 
numbers or equations, which are universally recognized as mathematical.

According to mathematical educators, “problem solving and reasoning 
are the heart of mathematics” (National Association for the Education of 
Young Children and National Council of Teachers of Mathematics, 2002, 
p. 6). In fact, solving problems is both a goal of mathematics learning and 
a mechanism for doing so. Young children will need support to formulate, 
struggle with, and solve problems and to reflect on the reasoning they use 
in doing so. By developing their ability to reason mathematically, children 
will begin to note patterns or regularities in the world and across the 
mathematical ideas they are introduced to. They will become increasingly 
sophisticated in their ability to recognize and analyze the mathematics in-
herent in the world around them.

Connecting and communicating are particularly important in the pre-
school years. Children must learn to describe their thinking (reasoning) 
and the patterns they see, and they must learn to use the language of math-
ematical objects, situations, and notation. Children’s informal mathematical 
experiences, problem solving, explorations, and language provide bases for 
understanding and using this formal mathematical language and notation. 
The informal and formal representations and experiences need to be con-
tinually connected in a nurturing “math talk” learning community, which 
provides opportunities for all children to talk about their mathematical 
thinking and produce and improve their use of mathematical and ordinary 
language. Children also need to connect ideas across different domains 
of mathematics (e.g., geometry and number) and across mathematics and 
other subjects (e.g., literacy) and aspects of everyday life.

Applying the Process Standards: Mathematizing

Together, the general mathematical processes of reasoning, represent-
ing, problem solving, connecting, and communicating are mechanisms by 
which children can go back and forth between abstract mathematics and 
real situations in the world around them. In other words, they are a means 
both for making sense of abstract mathematics and for formulating real 
situations in mathematical terms—that is, for mathematizing the situations 
they encounter.

The power of mathematics lies in its ability to unify a wide variety 
of situations and thereby to apply a common problem-solving strategy in 
seemingly disparate examples. For example, the number 3 applies not only 
to concrete situations, such as three pencils or three apples, but also to any 
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collection of three things, real or imagined. Thus, the addition problem 
3 + 2 = ? provides an abstract formulation for a vast number of actual situ-
ations in the world around one. The abstract nature of mathematics is part 
of its power: Because it is abstract, it can apply to a virtually limitless num-
ber of situations. But for children to use this mathematical power requires 
that they take situations and problems from the world around them and 
formulate them in mathematical terms. In other words, it requires children 
to mathematize situations.

Mathematizing happens when children can create a model of the situa-
tion by using mathematical objects (such as numbers or shapes), mathemat-
ical actions (such as counting or transforming shapes), and their structural 
relationships to solve problems about the situation. For example, children 
can use blocks to build a model of a castle tower, positioning the blocks 
to fit with a description of relationships among features of the tower, such 
as a front door on the first floor, a large room on the second floor, and a 
lookout tower on top of the roof. Mathematizing often involves represent-
ing relationships in a situation so that the relationships can be quantified.

For example, if there are three green toy dinosaurs in one box and 
five yellow toy dinosaurs in another box, children might pair up green 
and yellow dinosaurs and then determine that there are two more yellow 
dinosaurs than green ones because there are two yellow dinosaurs that do 
not have a green partner. With experience and guidance, children create 
increasingly abstract representations of the mathematical aspects of the 
situation. For example, drawing five circles instead of five yellow ducks 
or drawing a rectangle to represent the side of a box of tissues and, later, 
writing an equation to model a situation. Children become able to visual-
ize these mathematical attributes mentally, which helps in various kinds 
of problem solving. Children also need eventually to learn to read and to 
write formal mathematical notation, such as numerals (1, 2, 6, 10) and 
other symbols (=, +, −) and to use these symbols in mathematizing situa-
tions. Thus, mathematizing involves reinventing, redescribing, reorganizing, 
quantifying, structuring, abstracting, and generalizing what is first under-
stood on an intuitive and informal level in the context of everyday activity 
(Clements and Sarama, 2007).

Specific Mathematical Reasoning Processes

Mathematics learning in early childhood requires children to use sev-
eral specific mathematical reasoning processes, also known as “big ideas,” 
across domains. These big ideas are overarching concepts that connect 
multiple concepts, procedures, or problems within or across domains or 
topics and are a particularly important aspect of the process of forming 
connections. Big ideas “invite students to look beyond surface features of 
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procedures and concepts and see diverse aspects of knowledge as having the 
same underlying structure” (Baroody, Feil, and Johnson, 2007, p. 26).

Unitizing

Unitizing—finding or creating a mathematical unit—occurs in numeri-
cal, geometric, and spatial contexts. When children count, they must cre-
ate mental units of what they are going to count: single cats, the paws on 
several cats, or groups of two cats. To measure length, children must select 
a unit of length measure (for example, they will lay along a length and then 
count new crayons, feet stepped heel-to-toe along some distance, or inch 
lengths). To create repeating patterns, children must select and repeat a 
unit. For example, they might make a bead necklace by repeatedly string-
ing two cubes then a sphere (their unit). In designing a block building, they 
might repeatedly place a square, then a triangular block, repeating that 
unit around the top of their building. When making designs or pictures 
with pattern blocks, children might join several shapes to make a unit 
that they repeat throughout the design. To begin to understand the base 
10 place-value system, children must be able to view ten ones as forming 
a single unit of ten. Research suggests a link between being able to view a 
collection of shapes as a higher order unit and being able to view two-digit 
numbers as groups of tens and some ones (Clements et al., 1997; Reynolds 
and Wheatley, 1996). Because the concept of unit underlies core ideas in 
number and in geometry and measurement, it has been recommended as a 
central focus for early childhood mathematics education (Sophian, 2007).

Decomposing and Composing

Decomposing and composing are used throughout mathematics at ev-
ery level and in all topics. In the realm of numbers and operations (addition, 
subtraction, multiplication, and division), composing and decomposing are 
used in recognizing the number of objects in a collection, in the meaning 
of the operations themselves, and in the place-value system. Children can 
sometimes quickly determine the number of objects in a small collection by 
viewing the collection as composed of two immediately recognizable collec-
tions, such as seeing four counters as composed of a set of three counters 
and another counter. Composing and decomposing are the basis for the 
operations of addition and subtraction and later for the operations of mul-
tiplication and division. Some key steps toward developing proficiency with 
arithmetic involve decomposing and composing. Children must be able to 
decompose numbers from 1 to 10 into all possible pairs and to recognize 
numbers from 11 to 19 as composed of a ten and some ones. The base 10 
place-value system relies on repeated bundling in groups of ten. Proficiency 
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with multidigit addition and subtraction requires being able to compose ten 
ones as one ten and to decompose one ten as ten ones.

In geometry, shapes can be viewed as composed of other shapes, such as 
viewing a trapezoid as made from three triangles, or viewing a house shape 
as made from a triangle placed above a square. Children can compose rows 
of squares to make rectangles (see Figure 2-6). Many 3-D shapes seen in 
everyday life can be viewed as composed of shapes that are found in sets of 
building blocks (or at least approximately so). A juice box might look like 
a rectangular prism with a (sideways) triangular prism on top. Children can 
compose layers of cubes to make larger cubes and rectangular prisms.

In measurement, units are composed to make larger units and decom-
posed to make smaller units. Measurement itself requires viewing the attri-
bute to be measured as composed of units. In effect, using a unit of measure 
to partition a continuous quantity, such as a length or area, into discrete 
and equal size pieces transforms it into a countable quantity.

Relating and Ordering

Relating and ordering allow one to decide which is more and which 
is less in various domains: number, length, area. Having children see and 
discuss relating and ordering across domains can deepen mathematical 
understanding. By broadening the ways in which things can be compared, 
children are led to the idea of different measurable attributes. For example, 
two stacks of blocks might be made from the same number of blocks, but 
one stack might be taller than the other. Relating is a first step toward mea-
surement, because measurement is a quantified form of relating. A measure-
ment specifies how many of one thing (the unit) it takes to make the other 
thing (the attribute that is measured). When relating and number are joined 
via measurement, both realms are extended. On one hand, relating becomes 
more precise when it becomes measurement, and, on the other hand, num-
bers extend into fractions and decimals in the context of measurement. For 
example, a bucket of sand might be filled with 2½ smaller pails of sand.

Looking for Patterns and Structures and Organizing Information

Looking for patterns and structures and organizing information (in-
cluding classifying) are crucial mathematical processes used frequently in 
mathematical thinking and problem solving. They also have been viewed 
as distinct content areas in early childhood mathematics learning. Such 
pattern “content” usually focuses on repeated patterns, such as abab or 
abcabc, that are done with colors, sounds, body movements, and so forth 
(such as the bead and block patterning examples discussed in the section 
on unitizing). Such activities are appropriate in early childhood and can 
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help to introduce children to seeing and describing patterns more broadly 
in mathematics. The patterns abab, abcabc, and aabbaabb can be learned 
by many young children, and many children in kindergarten can do more 
complex patterns (Clements and Sarama, 2007). Learning to see the unit in 
one direction (from left to right or from top to bottom or bottom to top) 
(ab in abab, abc in abcabc) and then repeating it consistently is the core of 
such repeated pattern learning. Learning to extend a given pattern to other 
modalities (for example, from color to shape, sounds, and body move-
ments) is an index of abstracting and generalizing the pattern.

Counting involves some especially important patterns that go beyond 
simple repeating patterns. For example, the pattern of counting is a critical 
idea in number. The list of counting numbers has an especially important 
and intricate pattern, which involves a coordinated cycling of the digits 0 
through 9 in the ones, tens, hundreds, etc., places (see Box 2-2). Although 
this intricate pattern will not be fully understood by children until later in 
elementary school, the foundation for this understanding is laid in early 
childhood as they identify and use the repeating patterns in the number 
words to 100.

Organizing information, including classifying, has also been seen as 
early childhood mathematics content, as children use attribute blocks and 
other collections of entities in which attributes are systematically varied so 
that they can sort them in multiple ways. Attribute blocks usually vary in 
color, shape, size, and sometimes thickness, so that children can sort on any 
of these dimensions and also describe a given block using multiple terms. 
For example, in small groups, a teacher may first ask children to sort the 
blocks on one or two dimensions: “Find all the big blue blocks.” As chil-
dren become more proficient, the teacher adds challenge, such as “Find the 
small blue thin rectangle.” Later on, in preschool and in kindergarten, the 
teacher may ask children to generate their own descriptions of how groups 
of blocks are similar and different.

Recognizing patterns and organizing information are part of recogniz-
ing structure. At all levels in mathematics, one looks for structure. Some 
experiences in recognizing structure can be part of a foundation for later 
algebraic thinking. For example, recognizing that if there were 3 birds and 
then 2 more birds flew in versus if there were 2 birds at first and then 3 
more birds flew in results in the same total number of birds either way is a 
step toward recognizing the commutative property of addition, that a + b 
= b + a for all numbers a and b.

Although these content examples of looking for patterns and structures 
and organizing information are appropriate activities, they form a small 
part of the mathematics content for early childhood. Similarly, the specific 
skills in these examples are but a small part of the role that these processes 
play in mathematics.
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MATHEMATICAL CONNECTIONS

In this section we discuss some of the main connections across content 
areas of early childhood mathematics and into later mathematics. Math-
ematics as a whole is a web of interconnected ideas, and the mathematics 
of early childhood is no exception. Mathematics is also deep, in that every 
mathematical idea, including those of early childhood, is embedded in 
long chains of related ideas. As this section shows, the foundational and 
achievable mathematical ideas discussed in the previous sections are tightly 
interwoven with each other and with other important ideas that are studied 
later in mathematics.

Connections in Structuring Numbers, Shapes, and Space

Throughout mathematics, structure is found and analyzed by compos-
ing and decomposing. A group of objects can be joined to form a new 
composite object. An object can be decomposed to reveal its finer structure. 
Some of the most important connections in elementary mathematics con-
cern structuring of numbers and space via composition and decomposition. 
We now discuss several of these connections.

Making Units by Grouping

Numbers are structured by composition because the decimal place-value 
system relies on grouping by tens. In the realm of number, 10 individual 
counters are viewed as forming a single composite unit of 10. A geometric 
version of this grouping idea occurs when several shapes are put together 
to form another larger shape, which is then viewed as a unified shape in its 
own right, such as if the unified shape is seen as a possible substitute for 
another shape or as able to fill a space in a puzzle.

When children (or adults) make a repeating pattern, they might focus 
mainly on maintaining a certain order. But repeating patterns can also be 
viewed as made from a single composite unit that is copied over and over. 
This is not unlike viewing the counting numbers as a sequence that is struc-
tured in groups of 10 (see Figure 2-8).

Repeating patterns and, more generally, making groups of equal size 
are the basis for multiplication and division. Later in elementary school, 
when children skip count by fives, by counting 5, 10, 15, 20, . . . to list 
the multiples of 5, this pattern can be viewed as a growing pattern, but it 
can also be viewed as counting every fifth entry in a repeating pattern of 
5. When children study division with remainders (in around fourth or fifth 
grade), they may observe a repeating pattern in the remainders. For ex-
ample, when dividing successive counting numbers by 5, say, the remainders 
cycle through 0, 1, 2, 3, and 4.
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FIGURE 2-8 A repeating pattern is formed by repeating a unit. In counting, the 
ones digits form a repeating pattern.

1    1    1    1    1    1    1    1    1    1

2    2    2    2    2    2    2    2    2    2 3    3    3    3    3    3    3    3    3    30   1   2   3   4   5   6   7   8   9

0   1   2   3   4   5   6   7   8   90   1   2   3   4   5   6   7   8   9

0   1   2   3   4   5   6   7   8   9

Figure 2-8
R01420

Groups of Groups: Numbers, Shapes, and 2-D Space

The compositional structure of the decimal system is more complex 
than just making groups of 10 from 10 ones, since every 10 groups of 
10 are composed into a unit of 100. A geometric version of this group’s 
idea occurs when shapes are put together to form a new, composite shape, 
and composite shapes are then put together to make another composite 
shape—a composite of the composite shapes.

An especially important case of geometric structuring as composites 
of composites occurs when analyzing rectangles and their areas. When 
considering the area of a rectangle, one views the rectangle as composed of 
identical square tiles that cover the rectangle without gaps or overlaps. Each 
square tile has area one square unit. The area of the rectangle (in square 
units) is the number of squares that cover the rectangle. Although these 
squares can be counted one by one, to develop and understand the length 
× width formula for the area of a rectangle, the squares must be seen as 
grouped, either into rows or into columns (see Figure 2-6). Each row has 
the same number of squares in it, and the number of rows in the rectangle is 
equal to the number of squares in a column (likewise, each column has the 
same number of squares in it, and the number of columns is the number of 
squares in a row). Because of this grouping structure, the area of the rect-
angle is # rows × # in each row or length × width (square units). Similarly, 
the decimal system has a multiplicative structure because 100 is formed (by 
definition) by making 10 groups of 10, and so 100 = 10 × 10.

The idea of structuring rectangles as arrays of squares can be extended 
to structuring an entire infinite plane (in the imagination) as an infinite 
array of squares. This idea of a plane structured by an infinite array is es-
sentially the idea of the Cartesian coordinate plane, in which each point in 
the plane is described by a pair of numbers that indicate its location relative 
to two coordinate lines (axes) (see Figure 2-9).



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

50 MATHEMATICS LEARNING IN EARLY CHILDHOOD

FIGURE 2-9 The coordinate plane.
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Figure 2-9
R01420

Groups of Groups of Groups: Numbers, Shapes, and �-D Space

The compositional structure of the decimal system consists not only of 
making groups of 10 from 10 ones and groups of 100 from 10 groups of 
10, but also groups of 1,000 from 10 groups of 100, so that 1,000 = 10 × 
10 × 10. The grouping structure of the decimal system continues in such a 
way that all successive groupings are obtained by repeatedly grouping by 
10. The geometric counterpart of this grouping structure of the decimal 
system takes one into 3-D space and then higher dimensional space. Just 
as 2-D rectangles can be structured as 2-D arrays of squares, so, too, 3-D 
rectangular prisms (box shapes) can be structured as 3-D arrays of cubes. 
As in the case of rectangles, the multiplicative structure of a 3-D array of 
cubes explains why one multiplies the three dimensions of length, width, 
and height of a box to find its volume. Box shapes can be built as layers of 
identical cubes, as in Figure 2-12, and each layer can be viewed as groups 
of rows, so a box built from cubes can be viewed as a group of a group of 
cubes in the same way that 1,000 is 10 groups of 10 groups of 10.

When one extends the array structure of rectangular prisms to all of 
3-D space, one gets essentially the idea of coordinate space, in which the 
location of each point in space is described by a triple of numbers that 
indicate its location relative to three coordinate lines.

Motion, Decomposing and Composing, Symmetry, 
and Properties of Arithmetic

The properties (or laws) of arithmetic are the fundamental structural 
properties of addition and multiplication from which all of arithmetic is 
derived. These properties include the commutative properties of addition 
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and of multiplication, the associative properties of addition and multipli-
cation, and the distributive property of multiplication over addition. The 
commutative properties of addition and multiplication state that

 A + B = B + A for all numbers A, B

 A × B = B × A for all numbers A, B.

The associative properties of addition and multiplication state that

 A + (B + C) = (A + B) + C for all numbers A, B, C

 A × (B × C) = (A × B) × C for all numbers A, B, C.

The distributive property states that

 A × (B + C) = A × B + A × C for all numbers A, B, C.

Each property can be illustrated by moving and reorganizing objects, some-
times also by decomposing and recomposing a grouping, and sometimes 
even in terms of symmetry.

The report Adding It Up: Helping Children Learn Mathematics has 
a good discussion and an illustration of the commutative and associa-
tive properties of addition, the commutative and associative properties of 
multiplication, and the distributive property (National Research Council, 
2001, Chapter 3 and Box 3-1). The commutative property of addition is 
illustrated by switching the order in which two sets are shown. The com-
mutative property is especially useful in conjunction with counting on 
strategies for solving addition problems (see Chapter 5 for further discus-
sion of children’s problem-solving strategies for addition and subtraction). 
For example, instead of counting on 6 from 2 to calculate 2 + 6, a child 
can switch the problem to 6 + 2 and count on 2 from 6. The associative 
property involves starting with three separate sets, two of which are close 
together, separating the two that are close together, and moving one of 
those sets to reassociate with the other set. The associative property of ad-
dition is used in make-a-ten methods, when one number is decomposed so 
that one of the pieces can be recomposed with another number to make a 
group of 10.

Early experiences with properties of addition then extend to multiplica-
tion in third and fourth grade. The commutative and associative properties 
of multiplication and the distributive property are essential to understand-
ing relationships among basic multiplication facts and to understanding 
multidigit multiplication and division. For example, knowing that 3 × 5 = 
5 × 3 and that 7 × 8 can be obtained by adding 5 × 8 and 2 × 8 lightens 
the load in learning the multiplication tables. The commutative property 
of multiplication is illustrated by decomposing a rectangular array in two 
different ways: by the rows or by the columns (as shown in Figure 2-6) 
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FIGURE 2-10 Symmetry and relationships in the multiplication table.

The diagonal symmetry in the multiplication
table is due to the commutative property.

shifting over by 2
adds the 2× column

The relationship among the columns is due to
the distributive property, e.g.,
6 × 7  =  6 × 5   +   6 × 2.

× 1 5 8 9 1042 73 6

10 10 50 80 90 1004020 7030 60

2 2 10 16 18 2084 146 12

3 3 15 24 27 30126 219 18

4 4 20 32 36 40168 2812 24

5 5 25 40 45 502010 3515 30

6 6 30 48 54 602412 4218 36

7 7 35 56 63 702814 4921 42

8 8 40 64 72 803216 5624 48

9 9 45 72 81 903618 6327 54

1 1 5 8 9 1042 73 6

× 1 5 8 9 1042 73 6

10 10 50 80 90 1004020 7030 60

2 2 10 16 18 2084 146 12

3 3 15 24 27 30126 219 18

4 4 20 32 36 40168 2812 24

5 5 25 40 45 502010 3515 30

6 6 30 48 54 602412 4218 36

7 7 35 56 63 702814 4921 42

8 8 40 64 72 803216 5624 48

9 9 45 72 81 903618 6327 54

1 1 5 8 9 1042 73 6

Figure 2-10
R01420

or in terms of a rotation (see National Research Council, 2001, Box 3-1). 
The associative property of multiplication can be illustrated by decompos-
ing a 3-D array (or box shape built of blocks) in different ways (one way 
is shown in Figure 2-7). The distributive property is illustrated by viewing 
objects as grouped in two different ways (see National Research Council, 
2001, Box 3-1).

The properties of multiplication can be illustrated with arrays and rect-
angles, and they are also visible in the multiplication tables, which contain 
many relationships and have important structure. One structural aspect of 
the multiplication tables is their diagonal symmetry. This diagonal symme-
try corresponds with the commutative property of multiplication, namely 
that a × b = b × a for all numbers a and b. Recognizing this symmetry allows 
children to learn multiplication facts more efficiently. In other words, once 
they know the upper right-hand triangular portion of the multiplication 
tables in around third grade, they can fill in the rest of the table by reflect-
ing across the diagonal (see Figure 2-10).

Patterns associated with horizontal or vertical shifts (slides) can also 
be seen in the multiplication tables. For example, the entries in two col-
umns are related by the column that is associated with the amount of shift 
between the columns (see Figure 2-10). This structural relationship corre-
sponds with the distributive property.

Connections in Measurement and Number: Fractions

Once children encounter measurement situations, the possibility of 
fractions arises naturally. Fractions can be shown well in the context of 



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

FOUNDATIONAL MATHEMATICS CONTENT 5�

length and on number lines (in around second or third grade). A number 
line is much like an infinitely long ruler, so number lines can be viewed as 
unifying measurement and number in a one-dimensional space. A number 
on a number line can be thought of as representing the length from 0 to the 
number (see Figure 2-11).

Because of the close connection between number lines and length, num-
ber lines are difficult for children below about second grade. In contrast, 
the number paths on most number board games used for preschoolers are 
a count model, not a number line. There is a path of squares, circles, or 
rocks, each has a number on it, and players move along this path by count-
ing the squares or other objects or saying the number on them as they move. 
These are appropriate for younger children because they can support their 
knowledge of counting, cardinality, comparing, and number symbols.

In measurement, there is an important relationship between the size 
of a unit and the number of units it takes to make a given, fixed quantity. 
For example, if the triangle in Figure 2-5 is designated to have 1 unit of 
area, then the hexagon has an area of 6 units. But if one picks a new unit 
of area, such as designating the area of the rhombus in Figure 2-5 to be 1 
unit, which is twice the size of the triangle, then the hexagon has an area 
of only 3 units.

Later in elementary school (in around second grade), children see this 
inverse relationship between the size of a unit of measurement and the 
number of units it takes to make a given quantity reflected in the inverse 
relationship between the ordering of the counting numbers and the ordering 
of the unit fractions (see Figure 2-12).

Connections in Data Analysis, Number, and Measurement

To use data to answer (or address) a question, one must analyze the 
data, which often involves classifying the data into different categories, 

FIGURE 2-11 Number lines relate numbers to lengths.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A number line is like an infinitely long ruler.
A number on a number line tells its distance from 0
   or the length between 0 and the number.

The number 12
is 12 units away
from 0.

length

Figure 2-11
R01420
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FIGURE 2-12 1 > ½ > ¹⁄3 > ¼.
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1
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1
3

1
4

Figure 2-12
R01420

displaying the categorized data graphically, and describing or comparing 
the categories. Because the process of describing or comparing categories 
usually involves number or measurement, number and measurement are 
central to data analysis, and data analysis provides a context to which 
number and measurement can be applied.

The collection of data should ideally start with a question of interest 
to children. For example, children in a class might be interested in how 
everyone got to school in the morning and might wonder what way was 
most popular. To answer this question, children might divide themselves 
into different groups according to how they got to school in the morning 
(by bus, by car, by walking, or by bike). The children could then make “real 
graphs” (graphs made of real objects) either by lining up in their categories 
or by each placing a small toy or token to represent a bus, a car, a pair of 
shoes, or a bike into predrawn squares, as shown on the left in Figure 2-13 
(the predrawn squares ensure that each object occupies the same amount 
of space in the graph). Instead of a real graph, children could display the 
data somewhat more abstractly in a pictograph by lining up sticky notes in 
categories, as on the right in the figure. Each child places a sticky note in 
the category for how the child got to school.

In general, pictographs use small, identical pictures to represent data. 
In this case, each sticky note stands for a single piece of data and functions 
as a small picture in a pictograph. Children can then use these real graphs 
or pictographs to answer such questions as “How many children rode a 
bus to get to school today?” or “Did more children ride in a car or walk 
to school today?” or even “If it were raining today, how do you think 
the graph might be different?” Data displays that are used in posing and 
answering such quantitative questions serve a purpose and help children 
mathematize their daily experiences. In contrast, data displays that are only 
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FIGURE 2-13 A template for a “real graph” and a pictograph made with sticky 
notes.

How we got to school this morning

bus car bike walking

How we got to school this morning

bus car bike walking

Each student
places a
small item
(e.g., toy car)
in a box to
indicate the
method of
transportation.

Each student
places a
sticky note
(possibly
with their
name on it)
in the
appropriate
category. 

Connect to math by asking questions such as:
•  How many students walked to school this morning?
•  Did more students walk or ride a car?
•  How many more students rode a bus than rode in a car?
•  How many sticky notes are on our graph?

Figure 2-13
R01420made but not discussed are not likely to help children develop or extend 

their mathematical thinking.
In around second or third grade, once children have worked with linear 

measurement, they can begin to work with bar graphs. One can think of 
bar graphs as arising from pictographs by fusing the separated entries in a 
pictograph to make the bars in a bar graph. In this way, the discrete count-
ing of separate entries in a pictograph gives way to the length measurement 
of a bar in a bar graph.

In third grade or so, once children have begun to skip count and to 
multiply, the entries in a pictograph can be used to represent more than one 
single piece of data. For example, each picture might represent 2 pieces of 
data or 10 pieces of data.

SUMMARY

This chapter describes the foundational and achievable mathematics 
content for young children. The focus of this chapter is on the mathemati-
cal ideas themselves rather than on the teaching or learning of these ideas. 
These mathematical ideas are often taken for granted by adults, but they 
are surprisingly deep and complex. There are two fundamental areas of 
mathematics for young children: (1) number and (2) geometry and mea-
surement as identified in NCTM’s Curriculum Focal Points and outlined 
by this committee. There are also important mathematical reasoning pro-
cesses that children must engage in. This chapter also describes some of 
the most important connections of the mathematics for young children to 
later mathematics.
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In the area of number, a fundamental idea is the connection between 
the counting numbers as a list and for describing how many objects are in 
a set. We can represent arbitrarily large counting numbers in an efficient, 
systematic way by means of the remarkable decimal system (base 10). We 
can use numbers to compare quantities without matching the quantities di-
rectly. The operations of addition and subtraction allow us to describe how 
amounts are related before and after combining or taking away, how parts 
and totals are related, and to say precisely how two amounts compare.

In the area of geometry and measurement, a fundamental idea is that 
geometric shapes have different parts and aspects that can be described, and 
they can be composed and decomposed. To measure the size of something, 
one first selects a specific measurable attribute of the thing, and then views 
the thing as composed of some number of units. The shapes of geometry 
can be viewed as idealized and simplified approximations of objects in the 
world. Space has structure that derives from movement through space and 
from relative location within space. An important way to think about the 
structure of 2-D and 3-D space comes from viewing rectangles as composed 
of rows and columns of squares and viewing box shapes as composed of 
layers of rows and columns of cubes.
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3

Cognitive Foundations for Early 
Mathematics Learning

Over the past two decades, a quiet revolution in developmental psy-
chology and related fields has demonstrated that children have skills and 
concepts relevant to mathematics learning that are present early in life, 
and that most children enter school with a wealth of knowledge and cog-
nitive skills that can provide a foundation for mathematics learning. At 
the same time, these foundational skills are not enough—children need 
rich mathematical interactions, both at home and at school in order to be 
well prepared for the challenges they will meet in elementary school and 
beyond. (Chapter 4 discusses supporting children’s mathematics at home, 
and Chapters 5 and 6 discuss children’s mathematical development and 
related instructional practices.) The knowledge and interest that children 
show about number and shape and other mathematics topics provide an 
important opportunity for parents and preschool teachers to help them 
develop their understanding of mathematics (e.g., Gelman, 1980; Saxe, 
Guberman, and Gearhart, 1987; Seo and Ginsburg, 2004).

In this chapter we review research on the mathematical development 
of infants and young children to characterize both the resources that most 
children bring to school and the limitations of preschoolers’ understand-
ing of mathematics. Because this literature is vast, it is not possible to do 
it justice in a single chapter. However, we attempt to provide an overview 
of key issues and research findings relevant to early childhood education 
settings. These include

• What is the nature of early universal starting points? These are gen-
erally thought to provide an important foundation for subsequent 
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mathematical development (e.g., Barth et al., 2005; Butterworth, 
2005; Dehaene, 1997; but see Holloway and Ansari, 2008, and Rips, 
Bloomfield, and Asmuth, 2008, for contrasting views). We examine 
two domains that are foundational to mathematics in early child-
hood: (1) number, including operations, and (2) spatial thinking, 
geometry, and measurement.

• What are some of the important developmental changes in math-
ematical understandings in these domains that occur during the 
preschool years?

• What is the relation of mathematical development to more general 
aspects of development needed for learning mathematics, such as the 
ability to regulate one’s behavior and attention?

EVIDENCE FOR EARLY UNDERSTANDING OF NUMBER

Preverbal Number Knowledge

Delineating the starting points of knowledge in important domains is a 
major goal in developmental psychology. These starting points are of theo-
retical importance, as they constrain models of development. They are also 
of practical importance, as a basic tenet of instruction is that teaching that 
makes contact with the knowledge children have already acquired is likely 
to be most effective (e.g., Clements et al., 1999). Thus, it is not surprising 
that infant researchers have been actively mapping out the beginnings of 
preverbal number knowledge—knowledge that appears to be shared by 
humans from differing cultural backgrounds as well as with other species, 
and thus part of their evolutionary endowment (e.g., Boysen and Berntson, 
1989; Brannon and Terrace, 1998, 2000; Brannon et al., 2001; Cantlon and 
Brannon, 2006; Dehaene, 1997; Dehaene, Dehaene-Lambertz, and Cohen, 
1998, Meck and Church, 1983). A large body of research has examined 
a set of numerical skills, including infants’ ability to discriminate between 
different set sizes, their ability to recognize numerical relationships, and 
their ability to understand addition and subtraction transformations. The 
study of numerical knowledge in infants represents a major departure 
from previously held views, which were heavily influenced by Piaget’s 
(1941/1965) number conservation findings and stage theory. These older 
findings showed that children do not conserve number in the face of spatial 
transformations until school age, and they led many to believe that before 
this age children lack the ability to form concepts of number (see Mix, 
Huttenlocher, and Levine, 2002, for a review). Although Piaget recognized 
that children acquire some mathematically relevant skills at earlier ages, 
success on the conservation task was widely regarded as the sine qua non 
of numerical understanding.
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Beginning in the 1960s and 1970s, researchers began to actively ex-
amine early numerical competencies, which led to a revised understanding 
of children’s numerical competence. This research identified a great deal 
of competence in preschool children, including counting and matching 
strategies that children use on Piaget’s conservation of number task (see the 
discussion in Chapter 5).

As we detail, infant and toddler studies have largely focused on the 
natural numbers (also called counting numbers). However, they have also 
examined representations of fractional amounts and proportional relations 
as well as geometric relationships, shape categories, and measurement. 
Moreover, although there is some disagreement in the field about the in-
terpretation of the findings of infant and toddler studies as a whole, these 
findings are generally viewed as showing strong starting points for the 
learning of verbal and symbolic mathematical skills.

Infants’ Sensiti�ity to Small Set Size

Infant studies typically use habituation paradigms to examine whether 
infants can discriminate between small sets of objects, either static or mov-
ing (Antell and Keating, 1983; Starkey and Cooper, 1980; Strauss and 
Curtis, 1981; Van Loosbroek and Smitsman, 1990; Wynn, Bloom, and 
Chiang, 2002). In a typical habituation study, infants are repeatedly shown 
sets containing the same number of objects (e.g., 2) until they become bored 
and their looking time decreases to a specified criterion. The infant is then 
shown a different set size of objects or the same set size, and looking times 
are recorded. Longer looking times indicate that the infant recognizes 
that the new display is different from an earlier display. Results show that 
infants (ranging in age from 1 day old to several months old) can discrimi-
nate a set of two objects from a set of three objects, yet they are unable to 
discriminate four objects from six objects, even though the same 3:2 ratio 
is involved. These findings indicate that infants’ ability to discriminate small 
set sizes is limited by number rather than by ratio. Huttenlocher, Jordan, 
and Levine (1994) suggest that infants’ ability to discriminate small sets (2 
versus 3) could be based on an approximate rather than on an exact sense 
of number.

Several studies suggest that the early quantitative sensitivity displayed 
by infants for small set sizes is actually based on their sensitivity to amount 
(surface area or contour length) which covaries with numerosity, rather 
than on number per se (Clearfield and Mix, 1999, 2001). That is, unless 
these variables are carefully controlled, the more items there are, the greater 
the amount of stuff there is. In studies that independently vary number and 
amount, Clearfield and Mix (1999, 2001) found that infants ages 6 to 8 
months detected a change in amount (contour length or area) but not a 
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change in number. Thus, if they were habituated to a set of two items, they 
did not dishabituate to a set of three items if that set was equivalent to the 
original set in area or contour length.

However, recent findings indicate that infants are sensitive to both 
continuous quantity and to number (Cordes and Brannon, 2008, in press; 
Kwon et al., 2009). Furthermore, Cordes and Brannon (2008) report that, 
although 6-month-old infants are sensitive to a two-fold change in number, 
they are sensitive to a three-fold change only in cumulative area across 
elements, suggesting that early sensitivity to set size may be more finely 
tuned than early sensitivity to continuous quantity. Other studies that 
provide support for early number sensitivity include a study showing that 
6-month-old infants can discriminate between small sets of visually pre-
sented events (puppet jumps) (e.g., Wynn, 1996). This result is not subject 
to the alternative explanation of discrimination based on amount rather 
than number, like the findings involving sets of objects. However, it is 
possible that even though the rate and duration of the events have been 
controlled in these studies, infants’ discrimination is based on nonnumerical 
cues, such as rhythm (e.g., Demany, McKenzie, and Vurpillot, 1977; Mix 
et al., 2002). Indeed, in one study in which the rate of motion was not a 
reliable cue to numerosity, 6-month-olds did not discriminate old and new 
numerosities (Clearfield, 2004).

A set size limitation also is seen in the behavior of 10- to 14-month-olds 
on search tasks (Feigenson and Carey, 2003, 2005; Feigenson, Carey, and 
Hauser, 2002). For example, in one study 12-month-olds saw crackers 
placed inside two containers. The toddlers chose the larger hidden quantity 
for 1 versus 2 and 2 versus 3 crackers, but they failed to do so on 3 versus 
4, 2 versus 4, and 3 versus 6 crackers (Feigenson, Carey, and Hauser, 2002). 
The authors suggest that this failure is due to the set size limitation of the 
object file system.1 When cracker size was varied, the toddlers based their 
search on the total cracker amount rather than on number. Similarly, 12- to 
14-month-olds searched longer in a box in which two balls had been hidden 
after they saw the experimenter remove one ball, than they did in a box in 
which one ball had been hidden and the experimenter removed one ball (in 
actuality there were no more balls in either box, as the experimenter sur-
reptitiously removed the remaining ball). They also succeeded on 3 versus 
2 balls but failed on 4 versus 2 balls. That is, they did not search longer in 
a box in which four balls were hidden and they saw two removed than in a 
box in which they had seen two hidden and two were removed. The failure 

1 The object file system refers to the representation of an object in a set that consists of small 
numbers, the objects are in a 1-to-1 correspondence with each mental symbol, and there is no 
summary representation of set size (e.g., three items are represented as “this,” “this,” “this” 
rather than “a set of three things”) (Carey, 2004).
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on 2 versus 4, which has the same ratio as the 2 versus 1 problem, suggests 
that they were using the object file system rather than the analog magnitude 
system, which is second system that represents large set sizes (4 or more) 
approximately. Furthermore, in this study, the toddlers based their search 
on the number of objects they saw hidden rather than on the total object 
volume. Thus, at least by 12 months of age, it appears that children can 
represent the number of objects in sets up to three (Feigenson and Carey, 
2003). A subsequent study shows that this set size limit can be extended to 
four if spatiotemporal cues allow the toddlers to represent the sets as two 
sets of two (Feigenson and Halberda, 2004).

Infants’ Sensiti�ity to Large Set Size

Recent studies have shown that infants can approximate the number 
of items in large sets of visual objects (e.g., Brannon, 2002; Brannon, 
 Abbott, and Lutz, 2004; Xu, 2003; Xu and Spelke, 2000; Xu, Spelke, and 
Goddard, 2005), events (puppet jumps) (Wood and Spelke, 2005), and 
auditory sets (Lipton and Spelke, 2003) that are well beyond the range of 
immediate apprehension of numerosity (subitizing range). Consistent with 
the accumulator model, which refers to a nonverbal counting mechanism 
that provides approximate numerical representations in the form of analog 
magnitudes, infants’ discrimination of large sets is limited by the ratio of 
the two sets being compared rather than by set size. Thus, at 6 months of 
age, when infants are habituated to an array of dots, they dishabituate to a 
new set as long as the ratio between two sets is at least 2:1. By 10 months 
of age, infants are able to discriminate visual and auditory sets that differ by 
a 2:3 ratio but not by a 4:5 ratio (Lipton and Spelke, 2003, 2004; Xu and 
Arriaga, 2007). Importantly, these studies controlled for many continuous 
variables, suggesting that the discriminations were based on number rather 
than amount (e.g., Brannon, Abbott, and Lutz, 2004; Cordes and Brannon, 
2008; Xu, 2003; Xu and Spelke, 2000).

Do Infants Ha�e a Concept of Number?

Infants may be able to discriminate between sets of different sizes but 
have no notion that all sets that have the same numerosity form a category 
or equivalence class (the mathematical term for such a category). This no-
tion is referred to as the cardinality concept (e.g., the knowledge that three 
flowers, three jumps, three sounds, and three thoughts are equivalent in 
number). Number covers such matters as the list of counting numbers (e.g., 
1, 2, 3, . . .) and its use in describing how many things are in collections. It 
also covers the ordinal position (e.g., first, second, third, . . .), the idea of 
cardinal value (e.g., how many are there?), and the various operations on 
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number (e.g., addition and subtraction). The notion of 1-to-1 correspon-
dences connects the counting numbers to the cardinal value of sets. Another 
important aspect of number is the way one writes and says them using the 
base 10 system (see Chapters 2 and 5 for further discussion). Knowledge 
of number is foundational to children’s mathematical development and 
gradually develops over time, so not all aspects of the number are present 
during the earliest years.

Several studies (e.g., Starkey, Spelke, and Gelman, 1990; Strauss and 
Curtis, 1984) examined whether infants understand that small sets that 
share their numerosity but contain different kinds of entities form a cat-
egory (e.g., two dogs, two chicks, two jumps, two drumbeats). Starkey and 
colleagues (1990) examined this question by habituating infants to sets of 
two or three aerial photographs of different household objects. At test, 
infants were shown novel photographs that alternated between sets of two 
and sets of three. Infants dishabituated to the novel set size, suggesting that 
they considered different sets of two (or three) as similar. Whereas these 
studies might be regarded as suggesting that infants form numerical equiva-
lence classes over visual sets containing disparate objects, these studies may 
have tapped infants’ sensitivity to continuous amount rather than number, 
as described above (Clearfield and Mix, 1999, 2001). That is, unless careful 
controls are put in place, sets with two elements will on average be smaller 
in amount than sets of three elements (e.g., Clearfield and Mix, 1999, 2001; 
Mix et al., 2002).

Findings showing that infants consider two objects and two sounds to 
form a category would not be subject to this criticism and thus could be 
considered as strong evidence for abstract number categories. In an impor-
tant study, Starkey, Spelke, and Gelman (1983) tested whether infants have 
such categories. While the results seemed to indicate that 7-month-olds 
regarded sets of two (or three) objects and drumbeats as similar, several 
attempts to replicate these important findings have called them into ques-
tion (Mix, Levine, and Huttenlocher, 1997; Moore et al., 1987). Thus, 
whether infants have an abstract concept of number that allows them to 
group diverse sets that share set size remains an open question. The find-
ings, reviewed below, showing that 3-year-olds have difficulty matching 
visual and auditory sets on the basis of number, and that this skill is related 
to knowledge of conventional number words, suggest that the ability to 
form equivalence classes over sets that contain different kinds of elements 
may depend on the acquisition of conventional number skills. Kobayashi, 
 Hiraki, Mugitani, and Hasegawa (2004) suggest that the methods used may 
be too abstract to tap this intermodal knowledge and that when the sounds 
made are connected to objects, for example, the sound of an object landing 
on a surface, evidence of abstract number categories may be revealed at 
younger ages, perhaps even in infants.
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Infant Sensiti�ity to Changes in Set Size

Several studies report that infants track the results of numerically 
relevant transformations—adding or taking away objects from a set. That 
is, when an object is added to a set, they expect to see more objects than 
were previously in the set and when an object is taken away, they expect 
to see fewer objects than were previously in the set. Wynn (1992a) found 
that after a set was transformed by the addition or subtraction of an object, 
5-month-old infants looked longer at the “impossible” result (e.g., 1 + 1 = 
1) than at the “correct” result. However, as for numerical discrimination, 
subsequent studies suggest that their performance may reflect sensitivity to 
continuous (cumulative size of objects) amount rather than to numerosity 
(Feigenson, Carey, and Spelke, 2002). For the problem 1 + 1, infants looked 
longer at 2, the expected number of objects, when the cumulative size of the 
two objects was changed than at three, the impossible number of objects, 
when the cumulative size of the objects was correct—that is, when the 
cumulative area of the three objects was equivalent to the area that would 
have resulted from the 1 + 1 addition.

Cohen and Marks (2002) suggested an alternative explanation for 
Wynn’s results. In particular, they suggest that the findings could be at-
tributable to a familiarity preference rather than to an ability to carry out 
numerical transformations. For the problem 1 + 1 = 2, they point out that 
infants more often see one object, as there was a single object in the first 
display of every trial and thus, based on familiarity, look more at 1 (the 
incorrect answer). A similar argument was made for looking more at 2 for 
the problem 2 − 1.

Although their findings support this hypothesis, a more recent study by 
Kobayashi et al. (2004) provides evidence that infants look longer at 1 + 1 
= 3 and 1 + 2 = 3 than at 1 + 1 + 2 and 1 + 2 = 3 when the first addend is 
a visual object and the second addend consists of a tone(s). This paradigm 
cannot be explained by the familiarity preference because, for each prob-
lem, infants see only one element on the stage.

Order Relations

A few studies have examined infants’ sensitivity to numerical order 
 relations (more than, less than). One habituation study showed that 10- and 
12-month-olds discriminated equivalent sets (e.g., a set of two followed 
by another set of two) from nonequivalent sets (e.g., a set of two fol-
lowed by a set of three) (Cooper, 1984). In another study, Cooper (1984) 
habituated 10-, 12-, 14-, and 16-month-old infants to sequences that were 
nonequivalent. In the “less than” condition, the first display in the pair 
was always less than the second (e.g., infants were shown two objects 



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

66 MATHEMATICS LEARNING IN EARLY CHILDHOOD

followed by three objects). The reverse order was shown for the “greater 
than” condition. At test, the 14- and 16-month-olds showed more inter-
est in the opposite relation than the one that was shown, suggesting that 
they represented the less than and greater than relations, whereas 10- and 
12-month-olds did not. However, Brannon (2002) presents evidence that 
infants are sensitive to numerical order relations by 11 months of age.

Summary

The results of infant studies using small set sizes show that, very early 
in life, infants have a limited ability to discriminate sets of different sizes 
from each other (e.g., 2 versus 3 but not 4 versus 6). The set size limitation 
has been interpreted as reflecting one of two core systems for number—the 
object file system. They also expect the appropriate result from small num-
ber addition and subtraction transformations (e.g., 1 + 1 = 2 and 2 − 1 = 1), 
at least when amount covaries with number. Somewhat later, by 10 months 
of age, infants discriminate equivalent from nonequivalent sets, and by 14 
months of age they discriminate greater than from less than relationships. 
Because many of these studies did not control for continuous variables 
that covary with number (i.e., contour length and surface area), the basis 
of infant discriminations is debated. However, recent studies indicate that 
infants are sensitive to both number of objects in small sets and to continu-
ous variables, and they may be more sensitive to number than to cumulative 
surface area. Infant studies also have examined sensitivity to approximate 
number by using larger sets of items (e.g., 8 versus 16). These studies have 
found that infants can discriminate between sets with a 2:1 ratio by age 6 
months and between those with 2:3 ratios by age 9 months as long as all 
set sizes involved are greater than or equal to 4, that is, 6-month-olds fail 
to discriminate 2 versus 4.

We also note that infants’ early knowledge of number is largely implicit 
and has important limitations that are discussed below. There were no 
number words involved in any of the studies described above. This means 
that learning the number words and relating them to sets of objects is a 
major new kind of learning done by toddlers and preschoolers at home and 
in care and education centers. This learning powerfully extends numerical 
knowledge, and children who acquire this knowledge at earlier ages are 
provided with a distinct advantage.

Mental Number Representations in Preschool Children

Just as much of the infant research has a focus on theorizing about and 
researching the nature of infant representations of number, so, too, does 
some research on toddlers and preschool children. The goal is to understand 
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how and when young children represent small and larger numbers. To do 
this, special tasks are used that involve hidden objects, so that children must 
use mental representations to solve the task. Sometimes objects are shown 
initially and are then hidden, and sometimes objects are never shown and 
numbers are given in words. These tasks are quite different from situations 
in which young children ordinarily learn about numbers in the home or in 
care and educational centers, and they can do tasks in home and naturalis-
tic settings considerably earlier than they can solve these laboratory tasks 
(e.g., Mix, 2002). In home and in care and educational settings, numbers 
are presented with objects (things, fingers), and children and adults may see, 
or count, or match, or move the objects. The objects do not disappear, and 
they are not hidden. Children’s learning under these ordinary conditions is 
described in Chapter 5. Here we continue to focus on theoretical issues of 
representations of numbers.

Small Set Sizes

Like infants, 2- to 3-year-olds show more advanced knowledge of 
number than would be predicted by previous views. As noted previously, 
conservation of number was considered to be a hallmark of number de-
velopment (Piaget, 1941/1965). However, Gelman’s (1972) “magic experi-
ment” showed that much younger children could conserve number if the 
spatial transformation was less salient and much smaller set sizes were used. 
In this study, 3- to 6-year-olds were told that either a set of two mice or a set 
of three mice was the “winner.” The two sets were then covered and moved 
around. After children learned to choose the winner, the experimenter al-
tered the winner set, either by changing the spatial arrangement of the mice 
or by adding or subtracting a mouse. Even the 3-year-olds were correct in 
recognizing that the rearrangement maintained the status of the winner, 
whereas the addition and subtraction transformations did not.

Huttenlocher, Jordan, and Levine (1994) examined the emergence of 
exact number representation in toddlers. They posited that mental models 
representing critical mathematical features—the number of items in the set 
and the nature of the transformation—were needed to exactly represent 
the results of a calculation. Similarly, Klein and Bisanz (2000) suggest that 
young children’s success in solving nonverbal calculations depends on their 
ability to hold and manipulate quantitative representations in working 
memory as well as on their understanding of number transformations.

Huttenlocher, Jordan, and Levine (1994) gave children ages 2 to 4 a 
numerosity matching task and a calculation task with objects (called non-
verbal; see Box 3-1). On the matching task, children were shown a set of 
disks that was subsequently hidden under a box. They were then asked to 
lay out the same number of disks. On the calculation task, children were 
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shown a set of disks that was subsequently covered. Following this, items 
were either added or taken away from the original set. The child’s task was 
to indicate the total number of disks that were hidden by laying out the 
same number of disks (“Make yours like mine”).

On both the matching and transformation tasks, performance increased 
gradually with age. Children were first successful with problems involving 
low numerosities, such as 1 and 2, gradually extending their success to 
problems involving higher numerosities. Importantly, when children re-
sponded incorrectly, their responses were not random, but rather were ap-
proximately correct. Approximately correct responses were seen in children 
as young as age 2, the youngest age group included in the study. On the 
basis of these findings, Huttenlocher, Jordan, and Levine (1994) argue that 
representations of small set sizes begin as approximate representations and 
become more exact as children develop the ability to create a mental model. 
Exactness develops further and extends to larger set sizes when children 
map their nonverbal number representations onto number words.

Toddlers’ performance on numerosity matching tasks indicates that, 
as they get older, they get better at representing quantity abstractly. This 
achievement appears to be related to the acquisition of number words (Mix, 
2008). Mix showed that preschoolers’ ability to discriminate numerosi-
ties is highly dependent on the similarity of the objects in the sets. Thus, 
3-year-olds could match the numerosities of sets consisting of pictures of 
black dots to highly similar black disks. Between ages 3 and 5, children 
were able to match the numerosities of increasingly dissimilar sets (e.g., 
black dots to pasta shells and black dots to sequential black disks at age 
3½; black dots to heterogeneous sets of objects at age 4).

BOX 3-1 
Clarifying Experimental Misnomers

	 Researchers	have	used	tasks	 in	which	two	conditions	vary	 in	 two	 important	
ways,	such	as	in	Huttenlocher,	Newcombe,	and	Sandberg	(1994).	In	one	condi-
tion,	children	are	first	shown	objects,	and	 then	 the	objects	are	hidden.	Number	
words	are	not	used	 in	 this	condition.	 In	 the	other	condition,	children	never	see	
objects	but	must	imagine	or	generate	them	(e.g.,	by	raising	a	certain	number	of	
fingers).	Here	the	numbers	involved	are	conveyed	by	using	number	words,	either	
as	a	story	problem	or	just	as	words	(e.g.,	“2	and	1	make	what?”).	In	their	reports,	
researchers	call	the	first	condition	nonverbal	and	the	second	condition	verbal.	But	
these	labels	are	a	bit	misleading,	because	they	sound	as	if	nonverbal	and	verbal	
are	 describing	 the	 children’s	 solution	 methods.	 In	 this	 report	 we	 use	 language	
that	mentions	both	aspects	that	were	varied:	with	objects	(called	nonverbal)	and	
without	objects	(called	verbal).



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

COGNITIVE FOUNDATIONS FOR EARLY MATHEMATICS LEARNING 6�

The abstractness of preschoolers’ numerical representations was also 
assessed in a study (Mix, Huttenlocher, and Levine, 1996) examining their 
ability to make numerical matches between auditory and visual sets, an 
ability that Starkey, Spelke, and Gelman (1990) had attributed to infants. 
The researchers presented 3- and 4-year-olds with a set of two or three 
claps and were asked to point to the visual array that corresponded to the 
number of claps. The 3-year-olds performed at chance on this task, but by 
age 4, the children performed significantly above chance. In contrast, both 
age groups performed above chance on a control task that involved match-
ing sets of disks to pictures of dots. Another study assessed the effect of the 
heterogeneity of sets on the ability of 3- to 5-year-olds to make numerical 
matches and order judgments. The results replicate Mix’s (1999b) finding 
that the heterogeneity of sets decreases children’s ability to make equiva-
lence matches. However, heterogeneity versus homogeneity of sets did not 
affect their ability to make order judgments (i.e., to judge which of two sets 
is smaller) (Cantlon et al., 2007).

Mix (2002) has also examined the emergence of numerical knowledge 
through a diary study of her son, Spencer. In this study, she found indica-
tions of earlier knowledge than the experiments described above might 
indicate. Spencer was able to go into another room and get exactly two 
dog biscuits for his two dogs at 21 months of age, long before children 
succeed on the homogeneous or heterogeneous set matching tasks described 
above. Indeed, Spencer himself had failed to perform above chance on 
these laboratory tasks. Thus, it appears that early knowledge of numerical 
equivalence may arise piecemeal, and first in highly contextualized situa-
tions. For Spencer, his earliest numerical equivalence matches occurred in 
social situations (e.g., biscuits for dogs, sticks for guests). Whether this is 
a general pattern or whether there are wide individual differences in such 
behaviors is an open question (also see Mix, Sandhofer, and Baroody, 2005, 
for a review).

Levine, Jordan, and Huttenlocher (1992) compared the ability of pre-
school children to carry out calculations involving numerosities of up to six 
with objects (called nonverbal) and without objects (called verbal) (the for-
mer calculations were similar to those described above in the Huttenlocher, 
Jordan, and Levine, 1994 study). The calculations without objects (called 
verbal) were given in the form of story problems (“Ellen has 2 marbles and 
her father gives her 1 more. How many marbles does she have altogether?”) 
and in the form of number combinations (e.g., “How much is 2 and 1?”). 
Children ages 4 to 5½ performed significantly higher on the calculation task 
when they could see objects and transformations than on the calculation 
tasks when they could not see objects or transformations. This was true 
for both addition and subtraction calculations. This difference in perfor-
mance between nonverbal and verbal calculations was particularly marked 
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for children from low socioeconomic backgrounds. Children from low 
socioeconomic backgrounds appear to have more difficulty accessing the 
numerical meaning of the number words (Jordan et al., 2006), which may 
be related to their exposure to cultural learning tools (e.g., number symbols, 
number words) (see Chapter 4 for further discussion).

Large Set Sizes

To investigate how preschoolers carry out approximate calculations 
with large numbers, 5-year-olds were presented with comparison and addi-
tion problems shown on a computer screen (Barth et al., 2005, 2006). On 
comparison problems, they were shown a set of blue dots (set sizes ranged 
from 10 to 58) that were then covered up. Next, they were shown a set of 
red dots and were asked whether there are more blue dots or red dots. On 
addition problems, they were shown a set of blue dots that were then cov-
ered up. They were then shown another set of blue dots that moved behind 
the same occluder. Finally, they were shown a set of red dots and were asked 
whether there were more blue dots or red dots. Subsequent experiments 
showed that children performed as well when the red dots were presented 
as a sequence of auditory tones as when they were presented visually. In 
each condition, performance was above chance and equivalent on compari-
son and addition problems, decreasing as the ratio of the red to blue dots 
approached 1. The ratio dependence of performance indicates that children 
are using the analogue magnitude system. This system differs from the exact 
representations of larger numbers that are built up by working with objects 
arranged in groups of tens and ones (see Chapter 5).

Summary

Toddlers and preschoolers continue to build on the two representa-
tional systems identified for infants: the object file system, which is limited 
to sets of three or less and provides a representation for each element in a 
set but no summary representation of set size, and the analogue magnitude 
system, which provides an approximate summary representation of set size 
but no representation of the individual elements in a set and no way to 
differentiate between adjacent set sizes, such as 10 and 11 (Carey, 2004; 
Feigenson, Dehaene, and Spelke, 2004; Spelke and Kinzler, 2007). Existing 
research also shows that children’s early numerical knowledge is highly 
context-dependent, often depending on the presence of objects or fingers 
to represent sets. Although their numerical abilities are limited, young 
children have considerably more numerical competence than was inferred 
from Piaget’s research. They are even building early informal knowledge 
in many other mathematics areas besides representation of the counting 
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numbers (see sections below). However, the path from informal to formal 
knowledge is not necessarily a smooth one.

Impressive growth of numerical competence from age 2 to age 6 is stim-
ulated by children’s learning of important cultural numerical tools: spoken 
number words, written number symbols, and cultural solution methods, 
like counting and matching. As shown by Wynn’s (1990, 1992b) research, 
the acquisition of the understanding of the cardinal meanings of number 
words is a protracted process. In a longitudinal study, Wynn found that it 
takes about a year for a child to move from succeeding in giving a set of 
“one” when requested to do so to being able to give the appropriate num-
ber for all numbers in his or her count list. The acquisition of such symbolic 
knowledge is important in promoting the abstractness of number concepts, 
that is, the concept of cardinality (that all sets of a given numerosity form 
an equivalence class). It is also important in promoting the exactness of 
number representations and the understanding of numerical relations, as 
only children who have acquired this knowledge understand that adding 
one item to a set means moving to the very next number in the count list 
(Sarnecka and Carey, 2008). The research concerning these cultural learn-
ing achievements is summarized in Chapter 5 in identifying foundational 
and achievable goals for teaching and learning. It is discussed in Chapter 
4 as a major source of socioeconomic differences, connected to differential 
exposure to talk about number at home and at preschool.

DEVELOPMENT OF SPATIAL THINKING AND GEOMETRY

Spatial thinking, like numerical thinking, is a fundamental component 
of mathematics that has its roots in foundational skills that emerge early in 
life. Spatial thinking is critical to a variety of mathematical topics, including 
geometry, measurement, and part-whole relations (e.g., Ansari et al., 2003; 
Fennema and Sherman, 1977, 1978; Guay and McDaniel, 1977; Lean 
and Clements, 1981; Skolnick, Langbort, and Day, 1982; see Chapter 6, 
this volume). Spatial thinking has been found to be a significant predictor 
of achievement in mathematics and science, even controlling for overall 
verbal and mathematical skill (e.g., Clements and Sarama, 2007; Hedges 
and Chung, in preparation; Lean and Clements, 1981; Shea, Lubinski, 
and Benbow, 2001; Stewart, Leeson, and Wright, 1997; Wheatley, 1990). 
One reason that spatial thinking is predictive of mathematics and science 
achievement is because it provides a way to conceptualize relationships in 
a problem prior to solving it (Clements and Sarama, 2007).

The mental functions encompassed by spatial thinking include catego-
rizing shapes and objects and encoding the categorical and metric relations 
among shapes and objects. Spatial thinking is also crucial in representing 
object transformations and the outcomes of these transformations (e.g., 
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rotation, translation, magnification, and folding) as well as perspective 
changes that occur as one moves to new locations. Spatial thinking is in-
volved in navigating in the environment to reach goal locations and to find 
one’s way back to one’s starting point. Use of spatial symbolic systems, 
including language, maps, graphs, and diagrams, and spatial tools, such as 
measuring devices, extend and refine the ability to think spatially.

As is the case for the development of number knowledge, recent re-
search has shown strong starting points for spatial thinking. In contrast 
to Piaget’s view, which is in opposition to the gradual unfolding of spatial 
skills over the course of development, recent evidence shows that infants are 
able to code spatial information about objects, shapes, distances, locations, 
and spatial relations. This early emergence of spatial skills is consistent 
with an evolutionary perspective that emphasizes the adaptive importance 
of navigation for all mobile species (e.g., Newcombe and Huttenlocher, 
2000, 2006; Wang and Spelke, 2002). That said, humans are unique in that 
their spatial skills are extended through symbolic systems, such as spatial 
language, measurement units, maps, graphs, and diagrams. Thus, it is not 
surprising that the trajectory of children’s spatial development depends 
heavily on their spatially relevant experiences, including those involving 
spatial language and spatial activities, such as block building, puzzle play, 
and experience with certain video games.

Starting Points in Infancy

Even young infants are able to segment their complex visual envi-
ronments into objects that have stable shapes, using such principles as 
cohesion, boundedness, and rigidity (e.g., see Spelke, 1990). Infants also 
perceive the similarities between three-dimensional objects and photographs 
of these objects (DeLoache, Strauss, and Maynard, 1979). In habituation 
studies, infants show sensitivity to shape similarities across exemplars (e.g., 
Bomba and Siqueland, 1983). In addition, they are able to recognize invari-
ant aspects of a shape shown from different angles of view (e.g., Slater and 
Morison, 1985).

Infants are also capable of forming categories of spatial relations—a 
claim that is widely supported; however, different views exist regarding the 
developmental sequence for children’s understanding of space categories 
(Quinn, 1994, 2004; van Hiele, 1986). As stated by Bruner, Goodnow, and 
Austin (1956), categorization entails treating instances that are discrim-
inable as the same. Using this criterion, Quinn showed that 3-month-old 
infants are sensitive to the categories above versus below (e.g., Quinn, 
1994) and left versus right (e.g., Quinn, 2004). Both of these categories 
involve the relationship of an object and a single referent object (e.g., a 
horizontal or vertical bar). However, infants are not able to code the rela-
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tionship between an object and a diagonal bar, showing that certain kinds 
of spatial relationship are privileged over others. Somewhat later, at 6 to 7 
months, they are sensitive to the category of between relationships (Quinn 
et al., 1999). This spatial category is more complex than above/below or 
left/right, as it involves the relation of an object to two referent objects 
(e.g., two bars). At around this same age, infants form other, rather subtle 
spatial concepts. For example, they are sensitive to the functional differ-
ence between a container and a cylindrical object that does not have a 
bottom, even though these objects are highly similar visually (Aguiar and 
 Baillargeon, 1998; Baillargeon, 1995).

Infants and toddlers also have impressive abilities to locate objects 
in space using both landmarks and geometric cues. Infants as young as 5 
months are also able to use enclosed spaces that define a shape (e.g., walls 
of a sandbox) to code the location of objects (Newcombe, Huttenlocher, 
and Learmonth, 1999). By 12 months, children code distance and direction 
and use this information to search for objects hidden in displays (Bushnell 
et al., 1995). By 16 to 17 months, they are able to use the rectangular shape 
of an enclosure as well as landmark cues (both adjacent to the hiding loca-
tion and at a distance from it) to search for objects (Hermer and Spelke, 
1994, 1996; Huttenlocher, Newcombe, and Sandberg, 1994; Learmonth, 
Newcombe, and Huttenlocher, 2001).

Mental Transformation of Shapes

Mental rotation (the ability to visualize and manipulate the movement 
of two-dimensional and three-dimensional objects) and spatial visualization 
(holding a shape in mind and finding the shape in more complex figures, 
combining shapes, or matching orientations) are fundamental spatial skills 
essential for mathematics learning (Linn and Peterson, 1985). Several re-
cent studies have shown that preschool children are able to mentally rotate 
shapes in the picture plane. In one study, Marmor (1975) showed that 
children as young as age 5 years are able to mentally rotate visual images 
in the picture plane to determine whether one image is the same as another. 
Similarly, Levine et al. (1999) showed that children as young as age 4½ are 
able to perform above chance on mental transformations involving rotation 
and translation.

In tasks requiring spatial visualization (e.g., holding an image, such 
as a block letter, in mind for later comparison to a standard block letter), 
children between ages 4 and 5 perform poorly unless the visualized image 
is in the same orientation as the comparison object, whereas children be-
tween ages 6 and 10 were not adversely affected by differences in orienta-
tion (Smothergill et al., 1975). Furthermore, spatial ability in manipulating 
orientation at age 7, but not at ages 3 to 5 (Rod-and-Frame Test, Preschool 
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Embedded Figures Test), predicted spatial visualization abilities much later, 
at age 18 (Ozer, 1987). This developmental shift in spatial visualization 
ability is most likely to reflect differences in mental rotation ability and 
perspective-taking. Thus, when children are better able to mentally ma-
nipulate images held in mind (e.g., imagining the letter “F” and mentally 
rotating it clockwise or counterclockwise), they will be more accurate at 
determining how these images will appear from various viewpoints.

Similarly, when a child is asked to imagine what an object would look 
like from another person’s perspective, this task is more easily accomplished 
when the child can mentally imagine the scene and move either themselves 
or the objects in order to match another person’s perspective of the scene. 
For example, a child is sitting at a desk that has a toy car to the left of a 
pencil on top of the desk. A teacher is sitting on the other side of the desk, 
opposite the child, and asks the child to arrange the toy car and the pencil 
so that they would match what the teacher sees. The task becomes easier if 
the child can imagine the desk with the two objects and mentally “walk” 
to the other side of the desk to figure out the answer (pencil on the left, toy 
car on the right) or can imagine the objects and mentally rotate them so 
that they are in the 180 degree position.

As mental rotation and perspective-taking ability increase over time, 
such factors as changes in orientation become less problematic in tasks in 
which one must match something displayed in a different orientation than 
the visualized object. The fact that early spatial visualization measures 
during preschool were not correlated with later spatial visualization may 
suggest that the foundations for spatial abilities, such as mental rotation 
and perspective-taking, are molded in these formative years and are highly 
susceptible to change, more so than during later elementary education. This 
has important implications for findings that display gender differences in 
spatial performance on such tasks as mental rotation by age 4½ (Levine 
et al., 1999) and socioeconomic differences by second grade (Levine et al., 
2005). That is, these differences in spatial ability may largely be the result 
of experiential differences during early childhood, and the preschool pe-
riod may be an especially important time to begin addressing these issues 
through educational programs that foster spatial learning.2

The early emergence of mental rotation ability may be related to 
preschoolers’ success with map use. Given simple maps, 4-year-olds 
and a majority of 3-year-olds can locate a hidden object in a sandbox 
(Huttenlocher, Newcombe, and Vasilyeva, 1999), children ages 3 to 5½ 

2 Recent evidence shows a sex difference in mental rotation for 4- and 5-month-old infants 
that is not attributable to experimental factors (see Moore and Johnson, 2008; Quinn and 
Liben, 2008). Implications from these studies suggest there may be an advantage in early 
spatial learning for boys.
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can find a hidden toy in an open field (Stea et al., 2004) and children ages 
5 and 6 can navigate the hallways of an unfamiliar school (Sandberg and 
 Huttenlocher, 2001). In order to succeed on these tasks, children must 
recognize the correspondence between the map and the actual space of a 
similar shape, scale distance (which we discuss further in the section on 
measurement), and perform mental rotation of the map with respect to ac-
tual space. Successful use of maps among preschoolers has occurred when 
the maps were oriented with respect to the space and mental rotation was 
limited to the vertical plane (in order to match ground-based perception 
of the space). Increasing the complexity of mental rotations required to 
realign spaces causes maps to become increasingly difficult for preschool 
children and is most likely to explain some of the difficulty children show in 
interpreting maps even into the elementary school years (Liben and Downs, 
1989; Liben and Yekel, 1996; Piaget and Inhelder, 1967; Uttal, 1996; 
Wallace and Veek, 1995). Although the level of sophistication in mental 
transformation matures dramatically throughout childhood, the initial abil-
ity to mentally transform objects in space at the preschool age allows for 
productive interactions with spatial representations, such as maps.

Learning Spatial Terms: Relation to Spatial Mathematical Skills

As summarized above, infants form spatial categories from an early age 
(e.g., Quinn, 1994, 2004). These visual categories may lay the foundation 
for the later learning of the spatial terms that label these categories (e.g., 
Mandler, 1992). However, it is also possible that linguistic input guides the 
learning of spatial concepts, highlighting certain preverbal spatial concepts 
and not others, perhaps leading to the formation of new spatial concepts. 
An example of how language can shape a preexisting nonverbal concept 
is provided by recent evidence showing that English-speaking infants form 
categories for tight/loose fit, a relation that is labeled in Korean but not 
in English (e.g., Casasola and Cohen, 2002; Hespos and Spelke, 2004; 
McDonough, Choi, and Mandler, 2003). By 29 months of age, English-
speaking infants still categorized tight-fit containment relations when these 
were contrasted with loose-fit containment, but they no longer categorized 
loose-fit containment. By adulthood, English speakers do not pay atten-
tion to fit, categorizing tight and loose fit as “in” (McDonough, Choi, and 
Mandler, 2003). Thus, in this case exposure to English seems to play a 
selective function, highlighting some preexisting categories (in versus on) 
while downplaying others (tight fit/loose fit).

Exposure to spatial language during spatial experiences also appears 
to be particularly useful in “the learning and retention [of spatial concepts 
by] . . . inviting children to store the information and its label” (Gentner, 
2003, pp. 207-208). Gentner found that children who heard specific spatial 
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labels during a laboratory experiment that involved hiding objects (“I’m 
putting this on/in/under the box”) were better able to find the objects than 
children who heard a general reference to location (“I’m putting this here”). 
Moreover, this was true even two days later, without further exposure to 
the spatial language (Loewenstein and Gentner, 2005). Similarly, Szechter 
and Liben (2004) observed parents and children in the lab as they read a 
children’s book with spatial-graphic content. These researchers found a re-
lation between the frequency with which parents drew children’s attention 
to spatial-graphic content during book reading (e.g., “the rooster is really 
tiny now”) and children’s performance on spatial-graphic comprehension 
tasks.

Cannon, Levine, and Huttenlocher (2007) have also examined the 
parents’ use of spatial language during puzzle play in a longitudinal study 
in which parent-child dyads were observed during naturalistic interactions 
every four months from age 26 to 46 months. Their findings show that 
puzzle play is correlated with children’s mental rotation skill at 54 months 
for boys and girls. However, for girls but not boys, amount of parent spatial 
language during puzzle play (controlling for overall language input) is also 
a significant predictor of mental rotation skill at 54 months. This finding 
may be related to gender differences in the way in which spatial information 
is coded (e.g., Kail, Carter, and Pellegrino, 1979; Lourenco, Huttenlocher, 
and Fabian, under review).

Understanding of Geometric Shape and Shape Composition

Various proposals have influenced views on children’s shape categories. 
Piaget and Inhelder (1967) proposed a developmental sequence in which 
children first discriminate objects on the basis of topological features (e.g., 
a closed shape, which has an internal space defined by the closed boundary, 
versus an open shape, which has no defined internal or external boundaries) 
and only later on the basis of Euclidean features, such as rectilinear versus 
curvilinear. Still later, according to this theory, children are able to discrimi-
nate among rectilinear shapes (e.g., squares and diamonds). However, this 
sequence has been called into question on the basis of evidence that young 
children are able to represent the projective (e.g., curvilinear or rectilinear) 
as well as the Euclidean aspects of shape (e.g., Clements and Battista, 1992; 
Ginsburg et al., 2006; Kato, 1986; Lovell, 1959).

A different stage framework, proposed by van Hiele (1986), posits that 
children first identify shapes at the visual level on the basis of their appear-
ance, then represent shapes at the “descriptive” level on the basis of their 
properties, and finally progress to more formal kinds of geometric thinking 
that are based on logical reasoning abilities. Consistent with van Hiele’s 
first stage, preschoolers’ early shape categories are centered on prototypes 
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and the similarity of perceptual surface qualities of a shape are used to 
determine category inclusion. For example, preschoolers do not accept an 
inverted triangle as a triangle or nonisosceles triangles as triangles (e.g., 
Clements et al., 1999). Moreover, they tend to regard squares as a distinct 
category and not as a special kind of rectangle with four sides that are equal 
in length (Clements et al., 1999). Preschoolers sometimes overextend shape 
labels to nonexemplars. For example, they sometimes extend the label 
“rectangle” to right trapezoids as well as to nonrectangular parallelograms 
that have two sides that are much longer than the other two (Hannibal and 
Clements, 2008).

By the elementary school years, children’s shape categories incorporate 
deeper knowledge of rules and theories that are definitional (Burger and 
Shaughnessy, 1986; Satlow and Newcombe, 1998). The timing of the shift 
from relying on characteristic perceptual features to relying on defining fea-
tures varies depending on the shape. For example, Satlow and Newcombe 
(1998) report that this shift occurs between ages 3 and 5 for circles and 
rectangles, prior to second grade for triangles, and during second grade for 
pentagons. During the preschool years, the main change in shape categories 
is an increasing tendency to accept atypical exemplars of shapes as members 
of the category—that is, to extend shape categories beyond prototypical 
examples (e.g., Burger and Shaughnessy, 1986; Usiskin, 1987). The ability 
to broaden shape categories to include nonprotoypical examples depends 
on exposure to a variety of exemplars rather than to just prototypical 
examples such as equilateral and isosceles triangles (e.g., Clements et al., 
1999). Neither Piaget’s nor van Heile’s stage theories recognize preschool-
ers’ ability to represent and categorize shapes.

Children’s learning of specific spatial terms also helps highlight spatial 
categories. These spatial terms include shape words (e.g., circle, square, tri-
angle, rectangle), as well as words describing spatial features (e.g., curved, 
straight, line, side, corner, angle), spatial dimensions (e.g., big, little, tall, 
short, wide, narrow), and spatial relationships (e.g., in front of, behind, 
next to, between, over, under). Between ages 2 and 4, children learn terms 
for novel shapes more readily than other features, such as novel color or 
texture words (Heibeck and Markman, 1987; O’Hanlon and Roberson, 
2006). Fuson and Murray (1978) found that over 60 percent of 3-year-old 
children could name a circle, a square, and a triangle. By age 5, 85 percent 
of children could name a circle, 78 percent a square, and 80 percent a 
triangle. In addition, 44 percent could correctly name a rectangle (Klein, 
Starkey, and Wakesley, 1999). In a shape word comprehension study, results 
were similar.

Clements et al. (1999) report that over 90 percent of children, ranging 
in age from 3 years 5 months to 4 years 4 months, could correctly point 
out a circle, and by age 6 years, 99 percent of children could do so. Only 
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a few children in the younger group incorrectly chose an ellipse or another 
curved shape. For a square these numbers were also high yet somewhat 
lower: 82 percent of children in the younger group responded correctly, 
and 91 percent of 6-year-olds did so. Some children in the younger group 
incorrectly identified nonsquare rhombi as squares. Accuracy for triangles 
and rectangles was significantly lower (60 and 50 percent, respectively, for 
children ranging in age from 4 to 6).

Children also learn spatial words for shape dimensions (e.g., big, small, 
tall, short, wide, narrow) and words for the relationships of shapes (e.g., in, 
on, under, in front of, behind, between). For example, Clark (1972) reports 
that for each pair of dimensional adjectives, children learned the unmarked 
term before the marked term, that is, they learned big before little. Note 
that asking how big something is does not presuppose its being big or little, 
whereas asking how little something is carries the presupposition that one is 
asking about little things. The same is true for other pairs such as tall/short. 
The learning of these terms, like other words, is highly related to their fre-
quency of occurrence in child-directed speech (e.g., Levine et al., 2008).

Children who hear greater amounts of spatial language have been 
found to perform at higher levels on a variety of nonverbal spatial tasks, 
including the WPPSI-3 Block Design subtest and a mental rotation task 
(Levine et al., 2008). This correlation may rest on the association of spatial 
language and spatial activities. Furthermore, spatial language may serve to 
focus children’s attention on spatial relationships and lead to deeper pro-
cessing of this information (e.g., forming categories of shapes and spatial 
relations). However, parents’ spatial language to 3- to 5-year-old children 
has been found to occur more frequently during such activities as block and 
puzzle play than during other activities, such as book reading (Levine et al., 
2008; Shallcross et al., 2008). Furthermore, higher amounts of parent spa-
tial language occur during guided block play in which there is a goal than 
during free play with blocks (Shallcross et al., 2008). Thus, it is possible 
that spatial activities, spatial language, or both promote the development 
of spatial skills, such as block building and mental rotation.

Summary

As for number, there are strong starting points during infancy for learn-
ing about space, including shapes, locations, distances, and spatial rela-
tions. These early starting points, however, like those for number, undergo 
major developments during the preschool years and beyond. Moreover, 
developmental rates and the competencies achieved are highly dependent 
on access to spatial activities, spatial language, and learning opportunities 
at home and at school.

Children are equipped to comprehend and reason about shape at an 
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earlier age and in more complex detail than originally thought. By pre-
school, they benefit from learning about a variety of shapes, both typical 
and atypical, and this knowledge is impacted by their acquisition of spatial 
language. Language input and spatial activities appear to be highly influ-
ential in the development of spatial categories and spatial skills during the 
preschool years.

DEVELOPMENT OF MEASUREMENT

Measurement is a fundamental aspect of mathematics, which “bridges 
two main areas of school mathematics—geometry and number” through 
the attachment of number to spatial dimensions (National Council of 
Teachers of Mathematics, 2000). The development of measurement skills 
usually starts with directly comparing objects along one dimension. Thus, 
children generally succeed in measuring length prior to area and volume 
(Hart, 1984; but see Curry and Outhred, 2005, for early success in measur-
ing volume when the task involves successive filling of a container).

Certain skills, such as sensitivity to variations in amount, can be thought 
of as precursors to mature measurement skills and have been observed in 
infants. The ability to directly compare the lengths of objects is an early 
emerging skill and initially appears to be perceptually based (Boulton-Lewis, 
1987). Infants demonstrate awareness of variations in amount in one di-
mension (e.g., noticing height) as early as 4 months (Baillargeon, 1991) and 
can discriminate between two objects based on height at 6 months (Gao, 
Levine, and Huttenlocher, 2000). For example, 6-month-old infants and 
2-year-old toddlers are able to discriminate the length of dowels when they 
appear in the presence of a constant, aligned standard but not when there 
is no standard available with which to compare them (Huttenlocher, Duffy, 
and Levine, 2002).

Subsequent studies show that infants and toddlers are responding to the 
relative size of the standard and the test objects (Duffy, Huttenlocher, and 
Levine, 2005a, 2005b). This result is in line with the theory (Bryant, 1974) 
that relative coding precedes absolute coding. The ability to discriminate 
lengths in a more precise manner (distinguishing two heights that are fairly 
close without a present, aligned standard) develops some time between ages 
2 and 4. However, even by age 4, children’s sensitivity to variations in size 
is often influenced by the relation between two objects.

This early reliance on a standard to assess size may seem to contrast 
with findings by Piaget and his colleagues showing that young children do 
not spontaneously use a standard to measure objects (Piaget, Inhelder, and 
Szeminska, 1960). Piaget and colleagues argue that before school age, chil-
dren’s ability to encode metric information is limited because they lack the 
ability to make transitive inferences that are involved in measurement—that 
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is, if A = B (the measure) and B = C, then A and B are equivalent. How-
ever, unlike Piaget and colleagues’ task, in which the child was required to 
spontaneously use a stick to compare the heights of two towers that were 
not aligned, the experiments showing much earlier skill involve a visually 
aligned standard.

So far we have been discussing the development of the ability to dis-
criminate linear extents and not the understanding of equivalence/nonequiv-
alence of these extents, or sensitivity to amount transformations (adding 
or subtracting amounts). Although, as reviewed above, researchers have 
examined these topics with respect to discrete sets, there is little work on 
these topics with respect to continuous amounts. However, some evidence 
indicates that the ability to order continuous amounts is present at least by 
the preschool years. For example, Brainerd (1973) found that kindergart-
ners could arrange three balls of clay according to weight and could arrange 
three sticks according to length.

Understanding Units and Conventional Measurement

Early sensitivity to linear extent in relation to a standard is far from the 
mature ability to measure length. It is not until age 8 that children typically 
succeed in discriminating between objects of different lengths when there 
is not a constant aligned standard present. This ability is much closer to 
conventional measurement than the skill displayed by children up to age 4 
(Duffy et al., 2005a). These changes in sensitivity to variation in amount 
from age 4 to age 8 may be related to exposure to conventional measure-
ment at school and the ability to form and maintain images with certain 
attributes. However, developing a sophisticated conceptual understanding 
of linear measurement has a surprisingly long developmental time course 
(e.g., Copeland, 1979; Hiebert, 1981, 1984; Miller, 1984, 1989).

Conventional measurement involves several basic operations. First, 
it is important to realize that the units must be equal in size and must be 
specified. Second, the chosen unit must be repeated if it is smaller than the 
object being measured. Finally, the chosen unit must be subdivided when a 
whole unit does not fully cover the object or the remaining part of an object 
(Nunes, Light, and Mason, 1993).

Young children have difficulty understanding the importance of using 
an equal size unit. Miller (1984) showed that preschoolers between ages 
4 and 5 have difficulty appreciating that the size of pieces (or units) must 
remain constant in measurement situations. In a well-known example, 
Miller found that preschool children who are asked to divide candy evenly 
among children consider it fair to break the last piece in half if they run 
out of pieces. In other words, as long as everyone gets a piece, they are not 
concerned that the pieces are unequal in size. In a study in which 5- and 
6-year-olds were asked to make rulers by writing in the numbers, Nunes 
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and Bryant (1996) found that they failed to space the numbers even ap-
proximately equally. In another study reported by Nunes and Bryant, 
children ages 5 to 7 had no trouble answering whether a 7 cm or 6 cm 
ribbon is longer. However, when asked whether a 2 inch or 2 cm ribbon is 
longer, 5-year-olds performed at chance. Although 7-year-olds performed 
above chance, they still performed significantly worse when the units were 
unequal than when they were equal, even though all the children knew that 
an inch is longer than a centimeter. Even first through third graders have 
difficulty understanding the importance of equal size units on rulers. Pettito 
(1990) gave children in elementary school a choice of rulers with which 
they could measure a line. She found that the majority of first and second 
graders were content to use a ruler with units that varied in size—in fact, 
only about half the third graders chose the standard unit.

Preschool children also have difficulty understanding that changes in 
the units of measure change the numerical answer (1 foot = 12 inches), 
but they do not change the length of the object being measured. Preschool 
children commonly fail to grasp the fundamental property of a unit, that a 
whole object can be segmented into parts of various sizes without changing 
the overall amount of what is being measured. They often count discrete 
parts of objects as being examples of a whole rather than grouping objects 
and counting amounts based on meaningful units (e.g., the two halves of 
a plastic egg each count as eggs versus the combination of the two pieces 
is one egg) (Shipley and Shepperson, 1990; Sophian and Kailihiwa, 1998). 
Similarly, Galperin and Georgiev (1969) gave kindergarten children two 
equal cups of rice and had them empty the cups by putting spoonfuls of 
rice into piles on a table using either a tablespoon or a teaspoon. When 
asked which group of piles contained more rice (correct answer is neither), 
a majority of the children chose the one made with the teaspoon because it 
contained more piles rather than choosing the group made with the table-
spoon, which had fewer but larger piles. Thus, they were influenced by their 
propensity to count the overall number of piles. In this sense, children’s 
skill at counting can interfere with their understanding of measurement. 
These findings highlight that part-whole relationships are fundamental to 
understanding the relationship between units and wholes (see Sophian, 
2002, for a review).

A mature understanding of units of measure also entails the realiza-
tion that the smaller the size of the unit, the larger the number of units 
the object will encompass. Research by Sophian, Garyantes, and Chang 
(1997) showed that preschool children have difficulty understanding this 
inverse relation, but that with instruction they can learn it. Young children 
do demonstrate some understanding of measurement principles, such as the 
inverse relation between unit size and the number of units after training or 
when measurement activities are set in a familiar context (e.g., part of a 
normal everyday routine or using familiar objects). Sophian (2002) taught 
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preschool children ages 3 and 4 to correctly judge whether more small 
objects or more large ones would fit in a designated space. In pretest trials, 
the children incorrectly chose the larger object, but after six demonstration 
trials of watching the experimenter place objects of the two sizes, one by 
one, into two identical containers, they performed significantly better on 
posttest trials. These results identify the difficulties very young children 
have with understanding units and suggest that preschoolers (ages 2 years, 
9 months to 4 years, 7 months) benefit from instructional intervention high-
lighting the relation between unit size and number. Thus, young children 
show some understanding of fundamental mathematical concepts that are 
relevant to measurement if given the opportunity to explore these concepts 
in interactive, supportive contexts.

Scaling and Proportion

Children demonstrate early use of fundamental skills related to mea-
surement and proportional reasoning in their use of maps. A critical fac-
tor for success in map use is scaling, which is related to measurement and 
proportional thinking. Scaling refers to the ability to code distance and un-
derstand how distance on a map corresponds to distance in the real world 
(Huttenlocher et al., 1999). Newcombe and Huttenlocher (2000, 2005) 
review the hierarchical nature of spatial coding, suggesting that various 
systems of coding spatial location are available, and their use depends on a 
mix of factors (e.g., cue salience in the external environment, complexity of 
movements required for action by the viewer). Furthermore, the availability 
of these systems appears as early as 6 months for both externally referenced 
and viewer-centered systems, which is much earlier than is predominantly 
reported in the literature. In relation to map use, children not only need to 
code locations in space but also to accommodate changes in scale, which 
requires a form of measurement (e.g., comparing the distance between 
two locations on a map and the corresponding distance between two loca-
tions in the real world). Scaling has been assumed to involve proportional 
reasoning and therefore to occur much later in development, between ages 
10 and 12 (Piaget and Inhelder, 1967). However, evidence of early success 
using maps by children ages 3 to 6 indicates that scaling, at least in these 
cases, may represent a precursor to more precise measurement and is ac-
complished using spatial coding (Huttenlocher et al., 1999; Sandberg and 
Huttenlocher, 2001; Stea et al., 2004).

REGULATING BEHAVIOR AND ATTENTION

Infants’ and young children’s mathematical development also takes 
place in the context of cognitive and behavior regulation, which when 
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stimulated and supported can promote mathematical learning. Research 
suggests that executive function is more strongly associated with success-
ful transition to formal schooling than IQ or entry-level reading or mathe-
matics skills (Diamond, 2008). Executive function is defined as having three 
core components (Diamond, 2008). The first is inhibitory control, which is 
the ability to stay on task and do what is most necessary, even in the face 
of an inclination or impulse to do something else. The second is working 
memory, which is the ability to keep information in mind while still ma-
nipulating it or changing it mentally; “working memory may be thought 
of as a short-term ‘working space’ that can temporarily hold information 
while a participant is involved in other tasks” (Passolunghi, Vercelloni, 
and Schadee, 2007, p. 166). In mathematics specifically, this allows for 
performing mental arithmetic, such as addition or subtraction. The third 
component is cognitive flexibility, which allows for shifting between dif-
ferent tasks, demands, priorities, or perspectives. As Diamond explains, 
executive function, particularly the inhibitory control component, is very 
similar to self-regulation but tends to focus more on cognitive tasks and 
less on social situations. Multiple executive function skills may be valuable 
in early math learning. These include the ability to stay on task and ignore 
distractions, the ability to follow the teacher’s directions, the ability to keep 
two strategies in mind at the same time, the motivation to succeed, the abil-
ity to plan and reflect on one’s actions, and the ability to cooperate (Leong, 
n.d.; McClelland et al., 2007).

The link between mathematics success and executive function may 
have different underlying causes. Blair and colleagues (2007) review neu-
roscience research indicating that, in adults, there may be a relationship 
between mathematical skills and executive functioning at the neural level. 
Reviewing changes in mathematics curriculum for children, they also found 
that, increasingly, automatized knowledge is emphasized less and tasks that 
require executive function skills (pattern-solving, relational reasoning, and 
geometry concepts) are emphasized more. This is an area that will continue 
to shed light on the relationship between executive function and mathemati-
cal development as more research is conducted.

Some studies have explicitly found a link between executive function 
and early math skills.3 In a study of 170 Head Start children, Blair and 
Razza (2007) found that multiple aspects of self-regulation (including inhib-
itory control, effortful control, and false belief understanding, along with 
fluid intelligence) all made independent contributions to children’s early 
math knowledge. Similarly, McClelland and colleagues (2007) adminis-
tered the Heads-to-Toes task to more than 300 preschool-age children. The 

3 Different studies use different terms for concepts encompassed by executive function, such 
as self-regulation and behavioral regulation.
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Heads-to-Toes task asks children to do the opposite of what the instructor 
tells them. So, for example, if the instructor asks the children to touch their 
head, they are to touch their toes. This task measures behavioral regula-
tion (a component of self-regulation), in that it requires children to employ 
inhibitory control, attention, and working memory. The researchers found 
that behavioral regulation scores significantly predicted emergent math 
scores. The researchers conclude that “strengthening attention, working 
memory, and inhibitory control skills prior to kindergarten may be an ef-
fective way to ensure that children also have a foundation of early academic 
skills” (p. 956). Espy and colleagues (2004) specifically studied the roles 
of working memory and inhibitory control with almost 100 preschoolers. 
They found that both components of executive function contributed to the 
children’s mathematical proficiency, with inhibitory control being the most 
prominent. Passolunghi and colleagues (2007) studied 170 6-year-olds in 
Italy. They examined the roles of working memory, phonological ability, 
numerical competence, and IQ in predicting math achievement. They found 
that working memory skills significantly predicted math learning at the 
beginning of elementary school (primary school in Italy).

SUMMARY

This chapter underscores that young children have more mathematics 
knowledge, in terms of number and spatial thinking, than was previously 
believed. Very early in life, infants can distinguish between larger set sizes, 
for example 8 versus 16 items, but their ability to do so is only approxi-
mate and is limited by the ratio of the number of items in the sets. The set 
size limitation is thought to reflect one of the two core systems for number 
(Feigenson, Dehaene, and Spelke, 2004; Spelke and Kinzler, 2007). Further-
more, young infants’ early knowledge of quantity is implicit, in that they 
do not use number words, which means that learning number words and 
relating them to objects is one of the major developmental tasks to occur 
during early childhood.

Toddlers and preschool children move from the implicit understand-
ing of number seen during infancy to formal number knowledge. Spoken 
number words, written number symbols, and cultural solution methods are 
important tools that support this developmental progression.

Young children also learn about space, including shapes, locations, 
distances, and spatial relations, which also go through major development 
during the early childhood years. Children’s acquisition of spatial language 
plays an important role in the development of spatial categories and skills. 
In addition to learning about number and shape, early childhood also 
includes development of measurement, which is a fundamental aspect of 
mathematics that connects geometry and number. Young children’s under-
standing of measurement begins with length, which is perceptually based, 
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and an important feature of their learning during this period is that they 
have difficulty understanding units of measure. Young children can become 
successful at this when given appropriate instruction.

It is also important to note that across early childhood, mathematical 
development that is situated in an environment that promotes regulation of 
cognitive activities and behavior can improve mathematical development. 
More specifically, when young children have an opportunity to practice 
staying on task, to keep information in mind while manipulating or chang-
ing it mentally, and to practice shifting between differing tasks, mathematics 
learning is improved and in turn improves these regulatory processes.

Although we discuss universal starting points for mathematics devel-
opment in this chapter, there are, of course, differences in children’s math-
ematical development. The next chapter explores variation in children’s 
mathematical development and learning outcomes and the sources of this 
variation. We also discuss the role of the family and informal mathematics 
learning experiences in supporting children’s mathematical development.
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4

Developmental Variation, 
Sociocultural Influences, and 
Difficulties in Mathematics

There is evidence that most children bring foundational resources and 
knowledge about mathematics to school. However, this is not the whole 
story. Research findings reveal enormous discrepancies in young children’s 
levels of mathematics competence, and these discrepancies appear to be 
larger in the United States than they are in some other countries (e.g., 
China) (Starkey and Klein, 2008). This chapter describes the kinds of dif-
ferences that exist and reviews what is known about the nature and sources 
of developmental variations among children.

Most children bring core number sense or number competencies to 
school (National Research Council, 2001). Number sense refers to in-
terconnected knowledge of numbers and operations. Although preverbal 
number sense begins in infancy and appears to be universal, preschool and 
kindergarten number sense involves understanding of number words and 
symbols, which is heavily influenced by experience and instruction. The 
number sense children bring to kindergarten is highly predictive of their 
later mathematics achievement. The term “number sense” means different 
things in different fields of research, and almost no two researchers define 
it in exactly the same way (Gersten, Jordan, and Flojo, 2005; Jordan et al., 
2006). The term “number sense” is used in this chapter because much of the 
research summarized here uses it. When the discussion is more general, the 
term “number competencies” is used along with number sense to remind 
the reader that we are talking about knowledge and skills that can be taught 
and learned. The word “competencies” is used as a balanced term mean-
ing both knowledge and skills. The competencies encompassed by the term 
“number sense” as used here are described more fully in Chapter 5.
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Despite strong universal starting points, striking individual differences 
in number sense emerge early in life and are present by the time children 
enter preschool (e.g., Klibanoff et al., 2006). These differences are apparent 
both on standardized tests (e.g., Arnold et al., 2002; Starkey, Klein, and 
Wakeley, 2004) and on specific measures tapping early number competen-
cies, such as determining set size, comparing sets, and carrying out calcu-
lations (e.g., Entwisle and Alexander, 1990; Ginsburg and Russell, 1981; 
Griffin, Case, and Siegler, 1994; Jordan, Huttenlocher, and Levine, 1992; 
Levine et al., in preparation; Saxe, Guberman and Gearheart, 1987). The 
level of number sense in kindergarten is highly of predictive future math-
ematics success in first through third grades (Fuchs et al., 2007; Jordan, 
Glutting, and Ramineni, in press; Locuniak and Jordan, in press; Mazzocco 
and Thompson, 2005) as well as into the later school years (Duncan et al., 
2007).

In this chapter, we explore individual differences in children’s math-
ematics competence. We begin by describing the differences associated 
with key social groups specifically defined by socioeconomic status, gender, 
race/ethnicity, and English language ability. We then discuss the contextual 
factors and early experiences that appear to be linked to these differences, 
giving particular attention to the role of the family and language. We then 
discuss learning disabilities. We end with a brief discussion of potential 
intervention.

GROUP DIFFERENCES IN MATHEMATICS PERFORMANCE

Researchers have explored several key social factors that are linked 
to systematic, average differences in children’s mathematical performance. 
Socioeconomic status (SES), which includes income level as well as level of 
parental education, is strongly linked to differences in mathematics com-
petence. Evidence related to gender differences in mathematics competence 
is less clear, although some differences have been found.

Socioeconomic Status

Mathematical skills of young children from low-income families lag 
behind those of their middle-income peers. Preschoolers who attend Head 
Start Programs perform significantly below children who attend preschools 
serving middle-income children on standardized tests of mathematical read-
iness (Ehrlich and Levine, 2007). The gulf between low- and middle-income 
children is wide and includes spatial/geometric and measurement as well 
as number competencies (Clements, Sarama, and Gerber, 2005; Klein and 
Starkey, 2004; Saxe et al., 1987).

Jordan and colleagues (Jordan et al., 2006, 2007) found that low-
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income children enter kindergarten far behind their middle-income peers 
on tasks assessing counting skills, knowledge of number relations (e.g., 
recognizing which number is smaller), and number operations. Moreover, 
longitudinal assessment over six data points revealed that low-income chil-
dren were four times more likely than their middle-income peers to show 
flat growth in these areas throughout kindergarten and early first grade. 
Underlining the importance of early number sense to school success, the 
researchers found that level of performance on a battery assessing number 
sense in kindergarten as well as rate of growth between kindergarten and 
first grade accounted for 66 percent of the variance in mathematics learn-
ing at the end of first grade (Jordan et al., 2007). In other words, number 
sense in kindergarten in strongly related to competence in mathematics at 
the end of first grade and the rate of growth over the first grade year. In-
come status, gender, age, and reading ability did not account for additional 
variance in first grade mathematics outcomes over and above initial per-
formance and growth in number sense. This suggests that SES differences 
found at the end of first grade are due to initial differences in number sense 
in kindergarten.

Several studies indicate that SES differences in preschoolers’ number skills 
are more marked on tasks tapping number skills without objects (called ver-
bal tasks) than on tasks tapping number skills with objects (called nonverbal 
tasks). When kindergarten and first grade children are presented with verbal 
calculation problems with no objects, either as number combination prob-
lems (“How much is 3 and 2?”) or story problems (“Mike had 3 pennies. 
Jen gave him 2 more pennies. How many pennies does Mike have now?”), 
middle-income children perform much better than do low-income children 
(Jordan et al., 2006; Jordan, Huttenlocher, and Levine, 1992; Jordan, Levine, 
and Huttenlocher, 1994). Middle-income children also achieve at a faster 
rate on calculation problems without objects in kindergarten (Jordan et al., 
2006, 2007). In contrast, SES differences are smaller if the same calculations 
are presented in a nonverbal format with objects (e.g., the child is shown 3 
disks that are then hidden with a cover. The tester then slides 2 disks under 
the cover and the child indicates how many are now hidden).

Jeong and Levine (2005) have shown that knowing number words is 
associated with very early performance on numerosity matching tasks that 
do not require verbal responses (e.g., matching arrays of visual dots). Spe-
cifically, performance on these tasks is more exact for children who have 
acquired the meaning of a few number words. For instance, 2- to 3-year-
olds were more exact in their ability to match small set sizes when they have 
better knowledge of the cardinal meanings of number words. Although 
low-income children performed worse than middle-income children on 
such numerosity matching tasks, this difference was eliminated if answers 
that were plus or minus 1 from the correct answer were counted as correct 
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(Ehrlich, Levine, and Goldin-Meadow, 2006). Thus, low-SES preschoolers 
appear to have approximate representations of set sizes and number words 
at a time when their higher SES peers have gained exact representations. 
Therefore, low-SES preschoolers need experiences to learn number words 
and to use them to help on these matching tasks.

The sources of these differences are difficult to pinpoint. Research on 
children’s early experiences point to the amount of support for mathematics 
at home as well as other language and contextual factors. Some findings 
show that young children from low-income families receive less support for 
mathematics in their home environment than do their middle-income peers 
(Blevins-Knabe and Musun-Miller, 1996; Holloway et al., 1995; Saxe et al., 
1987; Starkey et al., 1999). Compounding the situation, public preschool 
programs serving low-income families tend to provide fewer learning op-
portunities and supports for mathematical development than ones serving 
middle-income families (Clements and Sarama, 2008). These factors are 
discussed in greater detail in the section on the influence of context and 
experience.

Gender

Results and opinions vary regarding gender differences in early math-
ematics. Some studies have no revealed gender differences in mathematics 
performance (e.g., Clements and Sarama, 2008; Lachance and Mazzocco, 
2006; Levine, Jordan, and Huttenlocher, 1992; Sarama et al., 2008). Some 
have found differences favoring boys: Jordan et al. (2006) found small but 
statistically significant gender effects on calculation with objects and on 
numerical estimation. In particular, boys had an edge over girls even when 
income level, age, and reading ability were controlled for in the analyses, 
and there were more boys than girls in the highest performing group. How-
ever, Coley’s (2002) analysis of the Early Childhood Longitudinal Study da-
tabase indicated small advantages in kindergarten in different areas for each 
gender: Girls were somewhat better in recognizing numbers and shapes, and 
boys were somewhat better in numerical operations.

Some research with older children indicates that girls in the primary 
grades may tend to use less advanced strategies than do boys (Fennema 
et al., 1998), and other work suggests no gender differences in the math-
ematics performance of older students (Hyde et al., 2008). Recent research 
(e.g., Carr et al., 2007) suggests spatial skills may promote the use of more 
advanced computational strategies, and boys seem to have an advantage 
in the more general area of spatial cognition, even in preschool. There are 
differences in the mean level of performance of boys and of girls on mental 
rotation tasks by 4½ years of age, ranging from small but significant dif-
ferences (Levine et al., 1999) to large differences with girls performing at 
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chance levels (Rosser et al., 1984). Preschool boys also perform better than 
preschool girls on solving problems involving mazes (e.g., Fairweather and 
Butterworth, 1977; Wechsler, 1967; Wilson, 1975) and are faster at copy-
ing a three-dimensional Lego (plastic blocks) model (Guiness and Morley, 
1991). However, it appears that at least some of these differences are cre-
ated by lack of particular types of experiences (Ebbeck, 1984).

Spatial skill may reflect or at least interact with greater engagement of 
boys than girls in spatial activities, such as building with Legos (Baenninger 
and Newcombe, 1989). Young boys typically spend more time playing with 
Legos and putting puzzles together than do girls, suggesting that engage-
ment in spatial activities promotes skill development (Levine et al., 2005). 
The amount of puzzle play for both boys and girls was related to the men-
tal transformation performance (McGuinness and Morley, 1991). Parents’ 
spatial language may be more important for girls than for boys; use of such 
language by parents related to mental transformation performance of girls 
but not of boys (Cannon, Levine, and Huttenlocher, 2007). Boys tend to be 
more interested in movement and action from the first year of life and girls 
more focused on social interactions (e.g., Lutchmaya and Baron-Cohen, 
2002). Boys also may gesture more on spatial tasks (e.g., Ehrlich, Levine, 
and Goldin-Meadow, 2006), indicating that encouraging gesture, especially 
for girls, may be helpful in spatial learning.

Given the finding that boys seem to have an advantage in spatial cog-
nition and that this seems to result partly from the number of experiences 
they have that support such learning, it seems particularly important for 
both numerical and spatial learning that girls be given opportunities for 
spatial learning. Importantly, intervention studies with preschoolers using 
a research-based mathematics curriculum did not find an interaction with 
gender, indicating that girls can learn as much as boys in both numeri-
cal and spatial tasks (Clements and Sarama, 2008; Sarama et al., 2008). 
Simple modifications to everyday preschool activities, such as block build-
ing (Kersh, Casey, and Young, in press) and the use of stories about spatial 
topics (Casey et al., 2008), have been shown to be effective in developing 
girls’ spatial cognition. Teachers should ensure that girls play with blocks 
and provide them with challenges that ensure that they extend their block-
building skills, such as building windows, bridges, and arches.

Race and Ethnicity

Over the past several decades, research has found differences in chil-
dren’s mathematics learning outcomes as a function of their race/ethnicity 
(e.g., Ginsburg and Russell, 1981). This section discusses differences in 
mathematics learning outcomes, but readers should keep in mind that using 
a fixed trait based on a single dimension can lead to a cultural deficit model 
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(Lubienski, 2007). Racial/ethnic groups are heterogeneous, and children in 
particular racial/ethnic groups have mathematical knowledge and skills that 
range from low to high mastery levels.

Generally, African American, Hispanic, and American Indian/Alaska 
Native children achieve at lower levels than their white peers in mathe-
matics (National Center for Education Statistics, 2007). Few data exist 
on early childhood mathematics teaching and learning in relation to race/
ethnicity, but one can extrapolate from K-12 studies. Findings suggest that 
this achievement disparity is related to differences in mathematics learning 
before school entry and fewer meaningful pedagogical experiences once 
children of color enter school (Magnuson and Waldfogel, 2008). For ex-
ample, the National Assessment of Educational Progress (NAEP) survey 
data show that fourth grade black and Hispanic students and those with 
low SES report that mathematics mainly consists of memorizing facts, a 
belief that is negatively correlated with achievement even after controlling 
for race/ethnicity and SES (Lubienski, 2006, 2007). Furthermore, teachers’ 
reports indicate that black and Hispanic children were more likely to be 
routinely assessed with multiple-choice tests than white students (Lubienski, 
2006). These practices do not represent the best pedagogy for high-quality 
mathematics education (National Council of Teachers of Mathematics, 
2000).

Teachers who build on children’s everyday mathematical experiences 
promote genuine mathematics learning (Civil, 1998; Ladson-Billings, 1995). 
For example, Ladson-Billings (1995) found that urban and suburban stu-
dents’ community experiences shaped the way they approached a math-
ematics problem-solving task and that students’ differing approaches to 
learning could be used by teachers to inform their instruction. Instructional 
practices that extend children’s out-of-school experiences are more likely to 
produce meaningful mathematics learning.

English Language Learners

Surprisingly little research has examined the mathematics performance 
of English language learners. Findings for other subject areas show that 
children who have limited proficiency in English perform more poorly than 
their native English-speaking peers in other academic subjects (McKeon, 
2005). A major issue for educating English language learners (ELL) is the 
language of instruction (Barnett et al., 2007; Genesee et al., 2006). In re-
search conducted by Barnett and colleagues (2007) with 3- and 4-year-olds, 
they tested whether children in a two-way immersion (English and Spanish) 
or those in English-only programs made gains in English language measures 
of mathematics, vocabulary development, and literacy. They found that 
children in both types of programs made gains on all academic measures 
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and the two-way immersion classrooms saw improvements in Spanish lan-
guage development for both ELL and English-speaking children without 
losses to English language learning (Barnett et al., 2007). It is important to 
note that classrooms in both types of program employed a licensed teacher 
and an assistant with a child development associate credential. A review of 
the K-12 literature on the language of instruction provides evidence that 
conflicts with the findings of Barnett and colleagues; specifically, Lindholm-
Leary and Borasato (2006) suggest that bilingual education may be related 
to more positive educational outcomes for older ELL students. Given these 
disparate findings, additional research in high-quality early childhood set-
tings on this topic is warranted.

One of the few studies focused specifically on mathematics competence 
with this population of students suggests there may not be performance dif-
ferences in mathematics. Secada (1991) found that first grade Hispanic stu-
dents were not at a disadvantage to their native English-speaking peers in 
solving addition and subtraction word problems. However, with the grow-
ing number of ELL in the student population, it vital that more attention 
be paid to the relationship between language status and early mathematics 
learning so that early childhood education can effectively accommodate and 
support these children.

INFLUENCE OF CONTEXT AND EXPERIENCE

As noted in the previous section, research has identified consistent, 
average differences in mathematics competence and performance depend-
ing on membership in a particular social group. Why group membership 
is linked to such differences is a complicated question. Research suggests 
that early experiences play an important role in shaping the observed dif-
ferences. In this section we explore the contributions of context and early 
experience. We begin with a general discussion of the role of families in 
shaping early experience, including parents’ knowledge and beliefs about 
mathematics, and the support they provide for mathematics through en-
gagement in mathematics activities. We then look more specifically at how 
differences in experiences at home are linked to the observed SES differ-
ences in performance. Finally, we consider the role of language in math-
ematics learning.

Role of Families

Families are one of the critical social settings in which children develop 
and learn (Bronfenbrenner, 2000; Iruka and Barbarin, 2008). Families influ-
ence children’s development in many ways, including parenting practices, 
provision of resources, interactions with school, and involvement in the 
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community (Weiss, Caspe, and Lopez, 2006; Woods and Kurtz-Costes, 
2007). Parents have different attitudes, values, and beliefs in raising young 
children, which result in difference emphasis on educational activities in 
the home. Families support mathematics learning through their activities 
at home, conversations, attitudes, materials they provide to their children, 
expectations they have about their performance, the behaviors they model, 
and the games they play. Parents also build connections with their children’s 
educational settings—all of which can shape children’s early mathematics 
development.

Parents’ Knowledge and Beliefs About Early Childhood Mathematics

Although there are only a few empirical studies about parental beliefs 
and behaviors related to early mathematics, those that exist suggest that 
parents place more importance on literacy development (Barbarin et al., 
2008). Barbarin and colleagues examined the beliefs of parents whose 
children were enrolled in public prekindergarten regarding the skills chil-
dren need to be prepared for school. Mathematical skills and such tasks as 
counting were rated less important than other social and cognitive tasks. 
Specifically, language/early literacy was mentioned 50 percent of the time, 
whereas numeracy was mentioned only 3.5 percent of the time (Barbarin 
et al., 2008). Similarly, Cannon and Ginsburg (2008) found that mothers 
thought it was more important that their children learn daily living skills 
and develop language skills in preschool than that their children learn 
mathematical skills. Most mothers in the study reported they themselves 
spent more time teaching their children language skills than mathematics 
skills at home.

Engagement in Mathematics Acti�ities

Children’s mathematical competence is supported and shaped by the 
math-related activities they engage in as part of their daily lives (Benigno 
and Ellis, 2008). Parenting practices in which parents engage children in 
conversations about number concepts, play with puzzles and shapes, en-
courage counting, and use number symbols to represent quantity in their 
interactions in the physical world can facilitate mathematics learning (see 
Box 4-1 for examples of how parents can engage children in mathematics 
activities). Acquiring mathematics knowledge involves more than learning 
numbers. It also includes learning shapes and patterns. It is facilitated by 
conversations about what children are doing when they compute, solve 
puzzles, and develop patterns and discussions of why they took a particular 
approach to a problem.

In fact, one study demonstrates how parents and their children can 
engage in mathematics-related activities. In a groundbreaking study of 
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early childhood mathematics in family contexts, Saxe and colleagues (1987) 
found that many of the children in the 78 families they studied, both low 
and middle income, were spontaneously engaging in number-related activi-
ties (counting toys, using numbers in play, etc.), but the nature of their nu-
merical knowledge and environment differed. Mothers in the study reported 
that both they and their children had a high level of interest in number play, 
but middle-income children performed better than low-income children on 
both the cardinality and arithmetic tasks.

There are numerous opportunities on a daily basis for children and 
families to explore mathematical terms and concepts. These include meal-
times, shopping, playtime, sports, television, and reading (Benigno and Ellis, 
2008). In fact, Blevins-Knabe and Musun-Miller (1996) provide evidence 

BOX 4-1 
Supporting Children’s Mathematics at Home

	 Parents	play	an	important	role	in	supporting	mathematics	learning	through	the	
mathematics-related	activities	in	which	they	engage	their	children.	Incorporating	
mathematics-focused	activities	during	play	 is	one	strategy	 for	enhancing	math-
ematics.	Another	is	to	capitalize	on	situations	in	which	mathematics	is	a	natural	
part	of	everyday	tasks,	such	as	grocery	shopping	or	cooking.	During	daily	activi-
ties,	parents	can:

	 •	 	Observe	their	children	carefully,	seeing	what	they	do	and	encouraging	and	
extending	their	fledgling	use	of	number	symbols	and	processing.

	 •	 	Say	the	number	word	list.	For	example,	they	can	count	small	food	items	or	
the	number	of	cups	at	the	table.

	 •	 	Ask	children	to	tell	them	about	their	problem	solving.	For	example,	they	can	
ask	“What	did	you	mean	by	that?”	or	“Why	did	you	do	it	that	way?”

	 •	 	Engage	 in	 activities	 that	 involve	 playing	 with	 blocks,	 building	 things,	 and	
board	games.

	 Given	the	prevalence	of	the	Internet,	television,	and	videogames	in	the	lives	
of	children,	even	young	children	(for	a	review,	see	Fisch,	2008),	these	means	of	
communication	provide	interesting	opportunities	for	impacting	early	mathematics	
skills.	 Fisch	 (2008)	 provides	 a	 review	 of	 existing	 media	 that	 include	 a	 math-
ematical	 component.	These	 include	 television	 shows,	 such	 as	 Sesame Street;	
	mathematics-based	software	games,	such	as	Building Blocks and	Millie’s Math 
House;	websites	that	include	mathematics	content,	such	as	that	of	Sesame	Street	
and	Disney;	and	electronic,	interactive	toys.
	 The	Internet	can	be	a	tool	to	help	families	devise	mathematics-related	activi-
ties	for	their	young	children.	Such	websites	as	FAMILY MATH,	from	the	Lawrence	
Hall	of	Science	at	the	University	of	California,	Berkeley,	can	provide	this	kind	of	
help.	Although	there	are	no	effectiveness	data	available	for	this	website,	FAMILY 
MATH	 offers	 fun	 activities	 that	 maintain	 mathematical	 integrity	 and	 uses	 inex-
pensive	materials	that	families	may	already	have	at	home	(see	http://sv.berkeley.
edu/showcase/pages/fm_act.html).
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to support the effects of parental modeling, reporting a relation between 
parental participation in number activities and children’s involvement in 
similar activities. Moreover, they found that parental reports of children’s 
number activities at home predicted their scores on a standardized test of 
early mathematical ability.

Several studies suggest that exposure to the language and symbol sys-
tem of mathematics powerfully extends the universal starting points of 
children’s quantitative knowledge and contributes to observed differences in 
mathematics competence. This is true in terms of exposure to the language 
of mathematics in preschool (Klibanoff et al., 2006) as well as at home be-
tween ages 14 and 30 months (Levine et al., in preparation). These studies 
show that the range of number words used in these settings is enormous. 
For example, in the home study, a longitudinal project in which families 
were visited every 4 months for five 90-minute sessions during which they 
were asked to go about their normal activities, the use of number words 
ranged from a low of 3 to a high of 175 instances. Similarly, in the class-
room studies, the amount of number input provided by teachers during 
a 1-hour period that included circle time ranged from 1 to 104 coded 
instances.

While research suggests that families do incorporate mathematics into 
their everyday lives, they may also need reminders of the importance of 
mathematics. An observational study of 39 preschoolers and their fami-
lies (Tudge and Doucet, 2004) found that the children engaged in a very 
low rate of explicit mathematics lessons over the course of a day and also 
demonstrated low levels of mathematics-related play. Of the mathematics 
lessons that were observed, the most common were lessons involving num-
bering, and the most common types of mathematical play involved toys 
that featured numbers (puzzles, computer programs, etc.). Furthermore, 
parents may overestimate their children’s mathematical skills. Fluck and 
colleagues (2005) found that parents believed their children had a much 
better grasp of the concept of cardinality (beyond mere counting) than the 
children actually displayed.

Differences in Children’s Experiences and Learning 
Opportunities as a Function of Socioeconomic Status

Evidence suggests that SES differences in children’s mathematics com-
petence are linked to parallel differences in experiences provided in the 
home. For parents in some low-SES families, involvement in fostering the 
acquisition of mathematics skills in their children may be hampered by 
multiple factors. Poverty and uncertainty related to inadequate resources 
and residential instability can easily become all-consuming, leaving room 
for little else. Parents in low-SES families, though concerned about their 
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children’s education, may feel less ready to assist them due to limitations 
in their own education, the strains of inadequate financial resources, unmet 
mental health needs, and specific discomfort with their own mathematical 
skills and a lack of awareness of the importance of early mathematics devel-
opment (for research on the effects of poverty on parenting see, e.g., Knitzer 
and Lefkowitz, 2006; McLoyd, 1990; see Clements and Sarama, 2007, for 
a specific discussion of low-income families and mathematics).

Research shows that low-income parents provide fewer mathematics 
activities than middle-class parents (Starkey et al., 1999). This includes free 
activities, such as those that are integrated into everyday experiences and 
made-up games, suggesting that, to some extent, lack of financial resources 
does not explain the difference. Starkey and Klein (2008) suggest that the 
difference may instead stem from educational background and exposure 
to mathematics courses. The difference may be resource-based as well. 
Ramani and Siegler (2008), in a study of board game activities, found that, 
although 80 percent of middle-class preschool-age children reported play-
ing one or more board games outside preschool, only 47 percent of Head 
Start children did so. However, such board games could easily be made and 
used at home.

It is also vital to remember that, in many cases, children and families 
from low-SES backgrounds are involved with many more agencies and 
programs than their more well-off peers. “Exploring the contribution of 
these additional settings is important because interpreting SES effects as 
emanating exclusively from the family or the child means that policy and 
program interventions may focus too narrowly as they attempt to improve 
the educational outcomes of low-SES children” (Aikens and Barbarin, 
2008, p. 236). Policy makers, researchers, and practitioners should not 
neglect the importance of the interactions and experiences of the multiple 
contexts and the nature of development in everyday life. Thus, at the level 
of a mother and child interacting in a larger social context unique to cul-
tural environments, the entire dynamic may influence a child’s learning and 
specifically reinforce or hinder the development of mathematical thinking 
and understanding.

The SES gap prior to preschool entry suggests that the home environ-
ment plays a major role, yet it is important to note that formal preschool 
programs do not appear to be ameliorating it. In fact, the gap widens during 
the preschool years. “In the United States, neither the home nor preschool 
learning environments of low-SES children provide sufficient enrichment 
to close or even maintain early SES-related differences in mathematical 
knowledge” (Starkey and Klein, 2008, p. 266). The issue of how to better 
support low-income children in mathematics and address the gap is taken 
up in detail in Chapter 7.
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Role of Language

Languages vary in the ways they represent mathematical concepts. 
This variation appears to be linked to variation in children’s mathematics 
learning. For example, several recent studies have shown that characteris-
tics of speakers’ language influence the quantitative skills of children and 
adults. One set of studies provides evidence that variations in the structure 
of a morphological marker, which refers to a language element that iden-
tifies quantity in different languages, is associated with the age at which 
children learn the meaning of specific cardinal numbers. That is, children 
who speak a language that marks the singular-plural distinction through 
a morphological marker (e.g., the s on the end of dogs, which indicates 
that the word is plural, is the morphological marker) acquire the meanings 
of small cardinal numbers sooner than children whose language does not 
make such a distinction (e.g., LeCorre, Li, and Lee, 2004; Li et al., 2003; 
Sarnecka et al., 2007). Even more strikingly, recent evidence has shown that 
adults in cultural groups with few number words perform worse than adults 
from cultural groups with more elaborated number systems in matching set 
sizes, performing arithmetic operations, and other cognitive tasks requiring 
knowledge of exact numbers (Gordon, 2004; Pica et al., 2004). There is 
also a large body of evidence regarding the implications of number naming 
systems for mathematics learning.

Language Differences in Number Names

Language differences in number names have received in-depth attention 
in the literature. Such differences appear to be linked to the ease with which 
children learn to count, an essential task during early childhood. Names 
and symbols for numbers can be (and have been) generated according to 
a bewildering variety of systems (see Ifrah, 1985; Menninger, 1958/1969). 
Because the base-ten system is so familiar and widespread and because 
humans have 10 fingers, it may appear that the development of a base-ten 
system is somehow natural and inevitable. Historically, base 4 and base 8 
systems were also common (Menninger, 1958/1969). However, most mod-
ern languages now use systems that are organized around a base of 10, 
although languages vary in the consistency and transparency of that struc-
ture. For example, number words in English, Spanish, and Chinese differ 
in important ways. In all three languages, number names can be described 
to a first approximation as a base-ten system, but the languages differ in 
the clarity and consistency with which the base-ten structure is reflected in 
actual number names.

Representations for numbers from 1 to 9 consist of an unsystemati-
cally organized list. There is no way to predict that “5” or “five” or “wu” 
comes after “4,” “four,” and “si,” in the Arabic numeral, English, or 
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Chinese systems, respectively. Names for numbers above 10 also diverge in 
interesting ways among the three languages. The Chinese number-naming 
system maps directly onto the Hindu-Arabic number system used to write 
 numerals. For example, a word-for-word translation of “shi qi” (17) into 
English produces “ten-seven.” English has unpredictable names for “11” 
and “12” that bear only a historical relation to “one” and “two” from the 
Old Saxon elle�an (one left over) and twelif (two left over) (Menninger, 
1958/1969). Whether the boundary between 10 and 11 is marked in some 
way is very significant, because this is the first potential clue to the fact that 
number names are organized according to a base-ten system.

English names for teen numbers beyond twelve do have an internal 
structure, but this relation is obscured by phonetic modifications of many of 
the elements from those used for 1 through 10 (e.g., “ten” becomes “teen,” 
“three” becomes “thir,” and “five” becomes “fif”). Furthermore, the order 
of formation reverses place value compared with the Hindu-Arabic and 
Chinese systems (and with English names above 20), naming the smaller 
value before the larger value (e.g., say “fourteen” but write 14 with the 4 
second). Spanish follows the same basic pattern for English to begin the 
teens, although there may be a clearer parallel between “uno, dos, tres” and 
“once, doce, trece” than between “one, two, three” and “eleven, twelve, 
thirteen.” The biggest difference between Spanish and English is that, after 
15, number names in Spanish abruptly take on a different structure. Thus, 
the name for 16 in Spanish “diez y seis” (literally “ten and six”), follows 
the same basic structure as do Arabic numerals and Chinese number names 
(starting with the tens value and then naming the ones place), rather than 
the structure used by teens names in English from 13 to 19 and by teens 
names in Spanish from 11 to 15 (starting with the ones place and then 
naming the tens value).

Above 20, all these number-naming systems converge on the Chinese 
structure of naming the larger value before the smaller one, consistent with 
the order of writing the values in numerals. Despite this convergence, the 
systems continue to differ in the clarity of the connection between decade 
names and the corresponding unit values. Chinese numbers are consistent in 
forming decade names by combining a unit value and the base (10). Decade 
names in English and Spanish generally can be derived from the name for 
the corresponding unit value, with varying degrees of phonetic modification 
(e.g., “five” becomes “fif” in English as in fifty rather that fivety, “cinco” 
becomes “cincuenta” in Spanish) and some notable exceptions, primarily 
the special name for twenty (“veinte”) used in Spanish.

Consequences for Learning to Count

Although languages differ in the length and complexity of the irregular 
portion of the system of names that must be learned, in general children 
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must learn quite a few number names prior to coming across data support-
ing the induction that they are dealing with an ordered base-ten system of 
names. Looking at the extent to which differences in learning reflect dif-
ferences in counting terms can assess effects of number-naming systems on 
children’s early mathematics.

Research on children’s acquisition of number names (Fuson, Richards, 
and Briars, 1982; Miller and Stigler, 1987; Siegler and Robinson, 1982) 
suggests that children in America learn to recite the list of number names 
through at least the teens in essentially a rote learning task. When first 
counting above twenty, U.S. preschoolers often produce idiosyncratic num-
ber names, indicating that they fail to understand the base-ten structure 
underlying larger number names, often counting “twenty-eight, twenty-
nine, twenty-ten, twenty-eleven, twenty-twelve.” This kind of mistake is 
extremely rare for Chinese children, indicating that the base-ten structure 
of number names is more accessible for learners of Chinese than it is for 
children learning to count in English.

The cognitive consequences of the relative complexity of English num-
ber names are not limited to obstacles placed in the way of early counting. 
Speakers of English and other European languages (Fuson, Fraivillig, and 
Burghardt, 1992; Séron et al., 1992) face a complex task in learning to 
write Arabic numerals, one more difficult than that faced by speakers of 
Chinese (compare the mapping between name and numeral for “twenty-
four” with that for “fourteen” in the two languages). Work by Miura and 
her colleagues (Miura, 1987; Miura and Okamoto, 1989; Miura et al., 
1988, 1993) suggests that the lack of transparency of base-ten markings in 
English has conceptual consequences as well. They have found that speak-
ers of languages whose number names are patterned after Chinese (includ-
ing Korean and Japanese) are better able than speakers of English and other 
European languages to represent numbers using base-ten blocks and to 
perform other place-value tasks. Because school arithmetic algorithms are 
largely structured around place value, this indication that the complexity 
of number names affects the ease with which children acquire this basic 
concept is a finding with real educational significance.

When learning to count, children must acquire a combination of con-
ventional knowledge about number names (they must learn their own 
cultural number word list in order), a conceptual understanding of the 
mathematics principles that underlie counting, and an ability to apply this 
knowledge to mathematical problem solving. Language differences during 
preschool appear to be limited to the first aspect of learning to count. For 
example, Miller and colleagues (1995) found no differences between Chi-
nese and U.S. preschoolers in the extent to which they violated counting 
principles when counting objects, or in their ability to use counting to pro-
duce sets of a given size in the course of a game. The effects of differences 
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in number-name structure on early mathematical development appear to 
be very specific to those aspects of mathematics that require one to learn 
and use these symbol systems. These effects have implications for learning 
Arabic numerals and thus for acquiring the primary symbol system used in 
school-based mathematics.

The nature and timing of differences in early counting between Chinese-
speaking and English-speaking preschoolers correspond to predictions 
based on the morphology of number names. Evidence from object counting 
indicates that these differences are also limited to aspects of counting that 
involve number naming. Miller and colleagues (1995) looked at children’s 
object counting for sets that were small (3-6 items), medium (7-10 items), 
and large (14-17 items). They found that Chinese-speaking children were 
significantly more likely to report the correct number word for a set than 
English-speaking children, but this was entirely due to the greater likelihood 
of Chinese children to correctly recite the sequence of names. The task of 
completely coordinating saying number words and designating objects in 
counting is quite difficult for many young preschoolers, and equally so for 
U.S. and Chinese children: 37 percent of U.S. and 38 percent of Chinese pre-
schoolers either pointed to an object and did not produce the number name 
or the reverse. Double counting or skipping objects was even more com-
mon, but again did not differ between the Chinese and U.S. preschoolers.

Consequences for Using the Base-ten Structure in Problem Sol�ing

The structure of number names is associated with a specific, limited 
difference in the course of counting acquisition between English-speaking 
and Chinese-speaking children. One area in which there may be conceptual 
consequences of these linguistic differences is in children’s understanding of 
the base-ten principle that underlies the structure of Arabic numerals. This 
structure is a feature of a particular representational system rather than a 
fundamental mathematical fact, but it is a feature that is incorporated into 
many of the algorithms children learn for performing arithmetic and thus 
is a powerful concept in early mathematical development. Because English 
number names do not show a base-ten structure as consistently or as early 
in the count sequence as do Chinese number names, English-speaking chil-
dren’s conceptual understanding of this base-ten structure may be delayed 
compared with their Chinese-speaking peers.

Miura and her colleagues (Miura, 1987; Miura and Okamoto, 2003; 
Miura et al., 1993) have looked at the base-ten understanding of two 
groups of first grade children: speakers of East Asian languages, whose 
number-naming systems incorporate a clear base-ten structure, usually 
based on Chinese, and speakers of European languages, which generally 
do not show a clear base-ten structure in their number names. The primary 
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task used is asking children to represent the cardinal value associated with 
a given number name using sets of blocks representing units and tens. Chil-
dren whose native language is Chinese, Korean, or Japanese are consistently 
more likely to represent numbers as sets of tens and ones as either a first or 
second choice than are children whose native language is English, French, 
or Swedish.

Ho and Fuson (1998) compared the performance of Chinese-speaking 
preschool children in Hong Kong with English-speaking children in Britain 
and the United States. They found that half of the Chinese-speaking 5-year-
olds (but none of the English-speaking children) who could count to at least 
50 were able to take advantage of the base-ten structure of number names 
to quickly determine the answer to addition problems of the form “10 + n = 
?,” compared with other problems. Fuson and Kwon (1992) argued that the 
Chinese number-naming structure facilitates the use of a tens-complement 
strategy for early addition. In this approach, when adding numbers whose 
sum is greater than 10 (e.g., 8 + 7), the smaller addend is partitioned into 
the tens-complement of the first addend (2) and the remainder (5); the 
answer is 10 plus that remainder (10 + 5). In Chinese-structured number-
naming systems, the answer corresponds to the result of the calculation 
(“shi wu” − “10 5”); in English, there is an additional step as the answer 
is converted into a different number name (“fifteen”). Fuson and Kwon 
reported that most Korean first graders they tested used this method before 
it was explicitly taught in school. Explicit instruction may be required for 
English-speaking children, but there is evidence that it can be quite success-
ful, even with children from at-risk populations. Fuson and her colleagues 
(Fuson, Smith, and Lo Cicero, 1997) report success with explicitly teaching 
low-SES urban first graders about the base-ten structure of numbers, with 
the result that their end-of-year arithmetic performance approximated that 
reported for East Asian children.

LEARNING DISABILITIES IN MATHEMATICS

Mathematics learning disabilities appear in 6 to 10 percent of the el-
ementary school population (Barberisi et al., 2005). Many more children 
struggle in one or more mathematics content area at some point during 
their school careers (Geary, 2004). Although less research has been devoted 
to mathematical than to reading disabilities (Geary and Hoard, 2001; 
Ginsburg, 1997), considerable progress has been made over the past two 
decades with respect to understanding the nature of the mathematics dif-
ficulties and disabilities that children experience in school (Gersten, Jordan, 
and Flojo, 2005).
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Characteristics of Learning Difficulties

Poor computational fluency is a signature characteristic of mathematics 
learning disabilities in elementary school (e.g., Geary, 2004; Hasselbring, 
Goin, and Bransford, 1988; Jordan and Montani, 1997; Jordan, Hanich, 
and Kaplan, 2003a, 2003b; Ostad, 1998; Russell and Ginsburg, 1984). 
Computational fluency refers to accurate, efficient, and flexible computa-
tion with basic operations. Weak knowledge of facts reduces cognitive and 
attentional resources that are necessary for learning advanced mathematics 
(Goldman and Pellegrino, 1987). Computational fluency deficits can be 
reliably identified in the first few years of school and, if not addressed, are 
very persistent throughout elementary and middle school (Jordan, Hanich, 
and Kaplan, 2003b).

Children around the world move through a learning path of levels of 
solution methods for addition and subtraction problems. These levels be-
come progressively more abstract, abbreviated, embedded, and complex. 
As they move through the levels, many children use a mix of strategies that 
vary according to number size and aspects of the problem situation (Geary 
and Burlinghman-Dubree, 1989; Siegler and Jenkins, 1989; Siegler and 
Robinson, 1982; Siegler and Shipley, 1995).

In contrast, young children with a mathematics learning disability rely 
on the most primitive Level 1 methods for extended periods in elementary 
school, do not use efficient counting procedures (e.g., counting on from 
the larger addend), and make frequent counting errors while learning to 
add and subtract (Geary, 1990). They also lag behind other children in the 
accuracy and linearity of their number line estimates (Geary et al., 2007). 
Researchers have differentiated children with a specific mathematics learn-
ing disability from those with a comorbid learning disability in both math-
ematics and reading. Jordan and colleagues (Hanich et al., 2001; Jordan, 
Hanich, and Kaplan, 2003a; Jordan, Kaplan, and Hanich, 2002) as well as 
other researchers (e.g., Geary, Hamson, and Hoard, 2000; Landerl, Bevan, 
and Butterworth, 2004) suggest that the nature of the mathematical deficits 
is similar for both groups, although children with the comorbid condi-
tion show lower performance overall. What differentiates children with a 
mathematics-only disability from those with combined mathematics and 
reading learning disabilities is that the former group performs better on 
word problems in mathematics, which depend on language comprehension 
as well as calculation facility. The potential for catching up in mathematics 
is much better for children with a mathematics-only disability, who can 
exploit their relative strength in general language to compensate for their 
deficiencies with numbers.

Some research shows that mathematics learning disabilities can be 
traced to early weaknesses in number, number relationships, and number 
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operations as opposed to more general cognitive deficits (e.g., Gersten et al., 
2005; Malofeeva et al., 2004). Weak number competency is reflected in 
poorly developed counting procedures, slow fact retrieval, and inaccurate 
computation, all characteristics of the disability (Geary et al., 2000; Jordan, 
Hanich, and Kaplan, 2003a). Skill with number combinations is tied to 
fundamental number knowledge (Baroody and Rosu, 2006; Locuniak and 
Jordan, in press). Accurate and efficient counting procedures can lead to 
strong connections between a problem and its solution (Siegler and Shrager, 
1984). Developmental dyscalculia, a severe form of mathematics disability 
that has a known neurological basis, is explained more by domain-specific 
impairments in number knowledge than by domain-general deficits related 
to memory, spatial processing, or language (Butterworth and Reigosa, 
2007). Although debate continues about the underpinnings of mathemat-
ics learning disabilities and diagnostic criteria (e.g., Geary et al., 2007), 
weakness in number sense appears to be a common theme in the literature. 
This finding has instructional implications for young children’s mathematics 
education. Specifically, early interventions that focus on number sense have 
the potential to improve children’s mathematics learning outcomes.

Helping High-Risk Children

Early number competencies serve as a foundation for learning formal 
mathematics (Griffin et al., 1994; Miller, 1992). Deficits in these can pre-
vent children from benefiting from formal mathematics instruction when 
they enter school, regardless of whether they are associated with environ-
mental disadvantages or with genuine learning differences or disabilities 
(Baroody and Rosu, 2006; Griffin, 2007). In a recent study, Jordan and 
colleagues (in press) found that poor mathematics achievement is mediated 
by low number sense regardless of children’s social class. That is, deficits 
in number sense are a better predictor of poor mathematics achievement 
than SES when all else is equal. Implications of this work suggest that chil-
dren from low-income backgrounds and those with mathematics difficul-
ties would benefit from a mathematics intervention during the early years 
(Jordan et al., in press).

Number competencies appear to have neurological origins, with their 
core components (e.g., subitization and approximate number representa-
tions) developing without much formal instruction (Berch, 2005; Dehaene, 
1997; Feigenson, Dehaene, and Spelke, 2004). These early foundations 
provide support for learning more complex number skills involving number 
words, number comparisons, and counting. Children with mathematics dif-
ficulties seem to have problems with the symbolic system of number, rather 
than the universal analog magnitude system. Knowledge of the symbolic 
number system is heavily influenced by experience and instruction (Geary, 
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1995; Levine et al., 1992). Engaging young children in number activities 
(e.g., a mother or preschool teacher asking a child to give her 4 cookies) and 
simple games (e.g., board games that emphasize 1-to-1 correspondences, 
counting, and moving along number paths) are important for strengthen-
ing foundations and building conventional number knowledge (Gersten 
et al., 2005, Klibanoff et al., 2006; Levine et al., in preparation). Case and 
Griffin (1990) report that number sense learning is closely associated with 
children’s home experiences with number concepts (e.g., reading number 
books with children). Moreover, efforts to teach number-related skills to 
high-risk kindergartners show promise for improving mathematics achieve-
ment (Griffin et al., 1994). In a recent study, Ramani and Siegler (2008) 
showed that playing a number board game that involved counting on 
squares on a number path improved the performance of 5-year-olds from 
low-income backgrounds on counting, numeral identification, numerical 
magnitude estimation, and number line estimation, and that the gains held 
after a follow-up several weeks later. Importantly, children playing this 
game said the number words written on the squares as they counted on one 
or two more, rather than saying “one” or “two” as they counted on. Play-
ing games to help children master basic number, counting, and arithmetic 
concepts and skills has long been advocated by mathematics educators (e.g., 
Baroody, 1987; Ernest, 1986; Wynroth, 1986)—a proposition that is sup-
ported by research (for reviews, see, e.g., Baroody, 1999; Bright, Harvey, 
and Wheeler, 1985).

The effects of weaknesses in early mathematics, if not addressed, are 
likely to be felt throughout the school years and beyond. There is good 
reason to believe that early intensive instruction, both at home and at 
school, will give children the background they need to achieve at grade 
level in elementary school mathematics and help “shape the course of their 
mathematical journey” (Griffin, 2007, p. 392).
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Part II

Teaching-Learning Paths

In Part II, we lay out a sequence of milestones for children ages 2-7 in 
the core areas of number (which includes whole number, relations, and op-
erations) and geometry and measurement. We call this sequence a teaching-
learning path. A teaching-learning path consists of the significant steps in 
learning in a particular topic; each new step in the learning path builds on 
the earlier steps. These paths are based on research that shows that young 
children generally follow particular paths when learning number-relations-
operations and geometry-measurement (Clements and Sarama, 2007, 2008; 
Fuson, 1992a, 1992b; Ginsburg, 1983). Of course, learning is a continuous 
process, but to overview the process, we have identified four related steps 
organized by age/grade. The four steps move from children 2 and 3 years 
old, to children age 4 or in prekindergarten, to children in kindergarten, 
to children in Grade 1. Grade 1 is included to indicate how the knowledge 
from the earlier step is used—and vital for doing well—in Grade 1.

For our purposes, we define the core mathematical ideas as those that 
are mathematically central and coherent, consistent with the thinking of 
children who have had adequate mathematical experiences, and generative 
of future learning. Thus, they are foundational mathematically and devel-
opmentally. They are achievable for children of these ages. That is, they 
are consistent with children’s ways of thinking, developing, and learning 
when they have experience with mathematics ideas. In addition, they are 
interesting to children. The committee recommends that all children learn 
this mathematics by the end of kindergarten.

In Chapter 2, we discussed why these core ideas are important math-
ematically. Here we focus on how they develop in children who have op-
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portunity to learn them as the ideas become increasingly sophisticated and 
interconnected over these years. Relationships among the ideas as well as 
some of children’s common errors are also discussed. Vital ideas for Grade 
1 are briefly overviewed to indicate how younger children’s knowledge is 
developed and extended into Grade 1.

As noted in Chapter 2, we are building on earlier efforts to articulate 
appropriate mathematics content for young children. In 1989, the Na-
tional Council of Teachers of Mathematics (NCTM) issued Curriculum and 
E�aluation Standards for School Mathematics. This document described 13 
curriculum standards for the grade band K-4 (as well as for the grade bands 
5-8 and 9-12). Although these standards have been influential, they do not 
describe the mathematics to be learned in detail and did not give guidance 
by grade level, nor for children younger than kindergarten.

In 2000, NCTM released Principles and Standards for School Math-
ematics (PSSM) after an extensive process of revision of the 1989 standards. 
Prekindergarten (pre-K) was included this time, in the grade band pre-K–2. 
PSSM described five content standards—number and operations, algebra, 
geometry, measurement, and data analysis and probability—and five pro-
cess standards—problem solving, reasoning and proof, communication, 
connections, and representations—for each of four grade bands (pre-K–2, 
3-5, 6-8, 9-12), covering all of school mathematics from pre-K through the 
end of high school. Although PSSM discussed the mathematics to be learned 
at the grade bands in greater detail than the 1989 standards did, it still did 
not specify what was to be learned at individual grade levels.

Recognizing the need for more in-depth attention to prekindergarten, 
early childhood educators and mathematics educators convened in 2000 
and publish a conference report on the development of mathematics stan-
dards for young children. The resulting book, Engaging Young Children in 
Mathematics: Findings of the 2000 National Conference on Standards for 
Preschool and Kindergarten Mathematics Education (Clements, Sarama, 
and DiBiase, 2004), contains 17 recommendations for early childhood 
mathematics education. They concern equity, programs, teaching, teachers 
and their development, assessment, appropriate mathematics for young 
children, and broader efforts to inform stakeholders and encourage col-
laboration in early childhood education and addressing the need for age/
grade level standards. That report grouped the mathematics content for 
early childhood into four topic areas: number and operations, geometry, 
measurement, and algebra, patterns, and data analysis.

In 2002, the National Association for the Education of Young Children 
(NAEYC) and NCTM approved a joint position statement, “Early Child-
hood Mathematics: Promoting Good Beginnings.” The statement includes 
10 research-based recommendations to guide practice and 4 policy recom-
mendations. The statement includes sample charts of learning paths related 
to a number goal and a geometry goal with activity examples.
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In 2006, NCTM released Curriculum Focal Points for Prekindergarten 
through Grade � Mathematics: A Quest for Coherence (hereafter Cur-
riculum Focal Points). These were developed in response to inconsistency 
in placement of topics by grade level in the United States and the lack of 
focus (“a mile wide and an inch deep”) typical of U.S. mathematics cur-
ricula. Although much shorter than PSSM (and developed over a much 
shorter time), this report gives grade-level recommendations for each indi-
vidual grade from pre-K to grade 8. These grade-level recommendations 
do not specify a full curriculum but rather describe the most significant 
mathematical concepts and skills at each grade level. There are three focal 
points at each grade level, each of which is a coherent cluster of skills and 
ideas, sometimes cutting across NCTM’s five content strands. Curriculum 
Focal Points recommends that instruction at a grade level should devote the 
vast majority of attention to the content identified in the three focal points 
(p. 6). At pre-K and kindergarten, the three focal points concern number 
and operations, geometry, and measurement.

In addition to the three focal points at each grade level, Curriculum 
Focal Points describes connections, which consist of related content, includ-
ing contexts and material to receive continuing development from previous 
grade levels. At pre-K, the connections concern data analysis, number and 
operations, and algebra. At kindergarten, the connections concern data 
analysis, geometry, and algebra. Collectively, these previous reports form 
the basis for the descriptions of foundational and achievable mathemat-
ics content in this report. The current report provides guidance on the 
two most critical mathematical areas during early childhood: number and 
operation and geometry and measurement, and as will be discussed later, 
number and operations is the area where young children need to spend the 
most time. Meaningful learning experiences in these content areas provide 
young children with the foundation that is necessary for them to be suc-
cessful in later mathematics.

SUPPORTING LEARNING IN MATHEMATICS

Our view of children is one of powerful and intrinsically motivated 
mathematics learners who, in a supportive physical and social environment, 
spontaneously learn some aspects of mathematics and make connections 
and extensions. However, children need adult guidance to help them learn 
the many culturally important aspects of mathematics, such as language 
and counting. In preschools and care centers, all children will bring to each 
mathematical topic area some initial competencies and knowledge on which 
to build. The major teaching challenge is to build a mathematical learning 
and teaching environment in which children will learn at least the basics of 
each topic area. This will enable them to practice and build on their own 
knowledge, with guidance from adults, peers, and family members, and 
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be supported to move through learning paths to learn the foundational 
and achievable content identified in this report. These teaching and learn-
ing environments need to be consistent with the process goals outlined in 
Chapter 2, and they need to support children to be active in thinking about 
and discussing mathematical ideas.

Children require significant amounts of time to develop the founda-
tional mathematical skills and understandings they have the desire and po-
tential to learn and that they will need for success at school. Although some 
children have a sufficiently enriched home environment and enough math-
ematically focused interactions with family members so that they develop 
many of the necessary foundational mathematical understandings and skills 
at home, others do not. For the sake of equity, preschool programs should 
help children develop foundational mathematical understandings and skills; 
high-quality preschool programs that devote sufficient time to mathematics 
are able to do so (see Chapter 7). Even children who learn mathematical 
ideas at home will benefit from a consistent high-quality program experi-
ence in the preschool and kindergarten years. It is therefore critical that suf-
ficient time is devoted to mathematics instruction in preschool programs so 
that children develop the foundational mathematical skills and understand-
ings described here. Time must be allocated not only for the more formal 
parts of mathematics instruction and discussions that occur in the whole 
group or in small groups, but also for children to elaborate and extend their 
mathematical thinking by exploring, creating, and playing.

The time that is allotted for mathematics in early childhood programs 
must be allocated across various topics. The typical description of math-
ematics content is divided into the five strands of number and operations, 
algebra, geometry, measurement, and data analysis and probability. These 
are used to describe and categorize all of school mathematics, from pre-K 
through high school, and these strands are intended to receive different 
amounts of emphasis at different grade levels.

The committee is concerned that inclusion of all five strands for young 
children has led some programs and teachers to spread their mathematics 
time equally across these different content areas, thus spreading mathemati-
cal experiences too thinly and not going deeply enough into the core foun-
dations that children need to establish firmly. It is important to concentrate 
on number and operations and on geometry and measurement in the early 
childhood period, with a greater portion of time spent on number and oper-
ations. Number is critically important to all of later mathematics. Geometry 
and measurement play an important supporting role in the development 
of number concepts and are themselves important to later mathematics. 
In addition, research on programs that result in positive learning gains for 
children indicate that children need sufficient time working with these ideas 
in order to achieve a level of proficiency that prepares them for continuing 
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success in mathematics. Of course, many activities overlap these topic areas 
and could be counted in either if there is a balanced focus on both. The 
time spent on number and operations and on geometry and measurement 
can also include connections to data analysis and patterns, as listed in Cur-
riculum Focal Points and discussed in the chapters of Part II.

The kind of learning involved in various number and operation compo-
nents and in various aspects of geometry and measurement is different, as 
we describe. Major themes of these variations in the kinds of learning are 
the need for achieving fluency, the use of patterns, generalizing, and extend-
ing. All of these require many repeated experiences with the same numbers 
and related similar tasks. This is part of what makes learning mathematics 
require so much time focused on mathematical content.

Mathematics is a participant sport. Children must play it frequently to 
become good at it. They do need frequent modeling of correct performance, 
discussion about the concepts involved, and frequent feedback about their 
performance. Both modeling and feedback can come from other students 
as well as from adults, and feedback also sometimes comes from the situ-
ation. All children must have sustained and frequent times in which they 
themselves enact the core mathematical content and talk about what they 
are doing and why they are doing it. In mathematics learning, effort cre-
ates ability.
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5

The Teaching-Learning Paths for 
Number, Relations, and Operations

In this chapter we describe the teaching-learning paths for number, 
relations, and operations at each of the four age/grade steps (2- and 3-year-
olds, 4-year-olds [prekindergarten], kindergarten, and Grade 1). As noted, 
the four steps are convenient age groupings, although, in fact, children’s 
development is continuous. There is considerable variability in the age at 
which children do particular numerical tasks (see the reviews of the litera-
ture in Clements and Sarama, 2007, 2008; Fuson, 1992a, 1992b; also see 
Chapter 4). However, a considerable amount of this variability comes from 
differences in the opportunities to learn these tasks and the opportunity to 
practice them with occasional feedback to correct errors and extend the 
learning. Once started along these numerical learning paths, children be-
come interested in consolidating and extending their knowledge, practicing 
by themselves and seeking out additional information by asking questions 
and giving themselves new tasks. Home, child care, and preschool and 
school environments need to support children in this process of becoming a 
self-initiating and self-guiding learner and facilitate the carrying out of such 
learning. Targeted learning path time is also needed—time at home or in an 
early childhood learning center—that will support children in consolidating 
thinking at one step and moving along the learning path to the next step.

Although we consider the mathematics goals described in this and the 
next chapter foundational and achievable for all children in the designated 
age range for that step, we recognize that some children’s learning will be 
advanced while others’ functioning will be significantly behind. Children at 
particular ages/grades may be able to work correctly with larger numbers or 
more complex geometric ideas than those we specify in the various tables 
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and text. Each subsequent step assumes that children have had sufficient 
experiences with the topics in the previous step to learn the earlier content 
well. (See Box 5-1 for a discussion of what it means to learn something 
well.) However, many children can still learn the content at a given step 
without having fully mastered the previous content if they have sufficient 
time to learn and practice the more challenging content. Of course, some 
children have difficulty in learning certain kinds of mathematical concepts, 
and a few have really significant difficulties. But most children are capable 
of learning the foundational and achievable mathematics content specified 
in the learning steps outlined here.

In both the number and operations and the geometry and measurement 
core areas, children learn about the basic numerical or geometric con-
cepts and objects (numbers, shapes), and they also relate those objects and 
 compose/decompose (operate on) them. Therefore, each core area begins by 
discussing the basic objects and then moves to the relations and operations 
on them. In all of these, it is important to consider how children perceive, 
say, describe/discuss, and construct these objects, relations, and operations.

The development of the elements of the number core across ages is de-
scribed first, and then the development of the relations and operations core 

BOX 5-1 
Learning Something Well

	 In	most	aspects	of	the	number	and	the	relations/operation	core,	children	need	
a	great	deal	of	practice	doing	a	task,	even	after	they	can	do	it	correctly.	The	rea-
sons	for	this	vary	a	bit	across	different	aspects,	and	no	single	word	adequately	
captures	 this	need,	because	 the	possible	words	often	have	somewhat	different	
meanings	for	different	people.
 Overlearning	 can	 capture	 this	 meaning,	 but	 it	 is	 not	 a	 common	 word	 and	
might	 be	 taken	 to	 mean	 something	 learned	 beyond	 what	 is	 necessary	 rather	
than	something	learned	beyond	the	initial	 level	of	correctness.	Automaticity	 is	a	
word	with	technical	meaning	in	some	psychological	literature	as	meaning	a	level	
of	performance	at	which	one	can	also	do	something	else.	But	to	some	people	it	
carries	only	a	 sense	of	 rote	performance.	Fluency	 is	 the	 term	used	by	several	
previous	committees,	and	we	have	therefore	chosen	to	continue	this	usage.	Flu-
ency	also	carries	 for	some	a	connotation	of	flexibility	because	a	person	knows	
something	well	enough	to	use	it	adaptively.	We	find	this	meaning	useful	as	well	
as	 the	usual	meaning	of	doing	something	rapidly	and	relatively	effortlessly.	Re-
search	on	reading	in	early	childhood	has	recently	used	fluency only	in	the	latter	
sense	as	measured	by	performance	on	standardized	 tests	of	 reading,	such	as	
the	Dynamic	Indicators	of	Basic	Early	Literacy	Skills	(DIBELS).	We	do	not	mean	
fluency	to	be	restricted	to	this	rote	sense.	By	fluent	we	mean	accurate	and	(fairly)	
rapid	and	(relatively)	effortlessly	with	a	basis	of	understanding	that	can	support	
flexible	performance	when	needed.
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is summarized. These cores are quite related, and their relationships are 
discussed. Box 5-2 summarizes the steps along the teaching-learning paths 
in the core areas. As children move from age 2 through kindergarten, they 
learn to work with larger and more complicated numbers, make connec-
tions across the mathematical contents of the core areas, learn more com-
plex strategies, and move from working only with objects to using mental 
representations. This journey is full of interesting discoveries and patterns 
that can be supported at home and at care and education centers.

THE NUMBER CORE

The four mathematical aspects of the number core identified in Chap-
ter 2 involve culturally specific ways that children learn to perceive, say, 
describe/discuss, and construct numbers. These involve

1. Cardinality: Children’s knowledge of cardinality (how many are in a 
set) increases as they learn specific number words for sets of objects 
they see (I want two crackers).

2. Number word list: Children begin to learn the ordered list of number 
words as a sort of chant separate from any use of that list in count-
ing objects.

3. 1-to-1 counting correspondences: When children do begin counting, 
they must use one-to-one counting correspondences so that each 
object is paired with exactly one number word.

4. Written number symbols: Children learn written number symbols 
through having such symbols around them named by their number 
word (That is a two).

Initially these four aspects are separate, and then children make vital con-
nections. They first connect saying the number word list with 1-to-1 cor-
respondences to begin counting objects. Initially this counting is just an 
activity without an understanding of the total amount (cardinality). If asked 
the question How many are there? after counting, children may count again 
(repeatedly) or give a number word different from the last counted word. 
Connecting counting and cardinality is a milestone in children’s numerical 
learning path that coordinates the first three aspects of the number core.

As noted, we divide the teaching-learning path into four broad steps. 
In Step 1, for 2- and 3-year-olds, children learn about the separate aspects 
of number and then begin to coordinate them. In Step 2, for approximately 
4-year-olds/prekindergartners, children extend their understanding to larger 
numbers. In Step 3, for approximately 5-year-olds/kindergartners, children 
integrate the aspects of number and begin to use a ten and some ones in 
teen numbers. In Step 4, approximately Grade 1, children see, count, write, 
and work with tens-units and ones-units from 1 to at least 100.
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BOX 5-2 
Overview of Steps in the Number, 
Relations, and Operations Core

Steps in the Number Core

 Step 1 (ages 2 and 3):	Beginning	2-	and	3-year-olds	learn	the	number	core	
components	 for	very	small	numbers:	cardinality,	number	word	 list,	1-1	counting	
correspondences,	and	written	number	symbols;	 later	2-	and	3-year-olds	coordi-
nate	these	number	core	components	to	count	n	things	and,	later,	say	the	number	
counted.
 Step 2 (age 4/prekindergarten):	Extend	all	four	core	components	to	larger	
numbers	 and	 also	 use	 conceptual	 subitizing	 if	 given	 learning	 opportunities	
to	do	so.
 Step 3 (age 5/kindergarten):	 Integrate	all	core	components,	see	a	ten	and	
some	ones	in	teen	numbers,	and	relate	ten	ones	to	one	ten	and	extend	the	core	
components	to	larger	numbers.
 Step 4 (Grade 1):	See,	say,	count,	and	write	tens-units	and	ones-units	from	1	
to	100.

Steps in the Relations (More Than/Less Than) Core

 Step 1 (ages 2 and 3):	Use	perceptual,	length,	and	density	strategies	to	find	
which	is	more	for	two	numbers	≤	5.
 Step 2 (age 4/prekindergarten):	Use	counting	and	matching	strategies	to	find	
which	is	more	(less)	for	two	numbers	≤	5.
 Step 3 (age 5/kindergarten): Kindergartners	show	comparing	situation	with	
objects	or	in	a	drawing	and	match	or	count	to	find	out	which	is	more	and	which	is	
less	for	two	numbers	≤	10.
 Step 4 (Grade 1):	Solve	comparison	word	problems	that	ask,	“How	many	more	
(less)	is	one	group	than	another?”	for	two	numbers	≤	18.

Steps in the Addition/Subtraction Operations Core

 Step 1 (ages 2 and 3):	Use	subitized	and	counted	cardinality	to	solve	situation	
and	oral	number	word	problems	with	totals	≤	5;	these	are	much	easier	to	solve	if	
objects	present	the	situation	rather	than	the	child	needing	to	present	the	situation	
and	the	solution.
 Step 2 (age 4/prekindergarten):	 Use	 conceptual	 subitizing	 and	 cardinal	
counting	 of	 objects	 or	 fingers	 to	 solve	 situation,	 word,	 and	 oral	 number	 word	
problems	with	totals	≤	8.
 Step 3 (age 5/kindergarten):	Use	cardinal	counting	to	solve	situation,	word,	
oral	number	word,	and	written	numeral	problems	with	totals	≤	10.
 Step 4 (Grade 1):	Use	counting	on	solution	procedures	to	solve	all	types	of	
addition	and	subtraction	word	problems:	Count	on	for	problems	with	totals	≤	18	
and	find	subtraction	as	an	unknown	addend.
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Step 1 (Ages 2-3)

At this step, children first begin to learn the core components of num-
ber: cardinality, the number word list, 1-to-1 correspondences, and written 
number symbols (see Box 5-3).

BOX 5-3 
Step 1 in the Number Core

	 Children	at	particular	ages/grades	may	exceed	the	specified	numbers	and	be	
able	to	work	correctly	with	larger	numbers.	The	numbers	for	each	age/grade	are	
the	foundational	and	achievable	content	for	children	at	this	age/grade.	The	major	
types	of	new	learning	for	each	age/grade	are	given	in	italics.	Each	level	assumes	
that	children	have	had	sufficient	learning	experiences	at	the	lower	level	to	learn	
that	content;	many	children	can	still	 learn	 the	content	at	a	 level	without	having	
fully	mastered	the	content	at	the	lower	 level	 if	 they	have	sufficient	time	to	 learn	
and	practice.

Beginning 2- and 3-Year-Olds Learn the Number Core Components

Cardinality:	How many animals (crackers, fingers, circles,	.	.	.	)? uses	perceptual	
subitizing	to	give	the	number	for	1,	2,	or	3	things.

Number word list:	Count as high as you can (no objects to count) says	1	to	6.
1-to-1 counting correspondences:	 Count these animals (crackers, fingers, 

circles,	.	.	.	) or	How many animals (crackers, fingers, circles,	.	.	.	)?	counts	ac-
curately	1	to	3	things	with	1-1	correspondence	in	time	and	in	space.

Written number symbols:	This (2, 4, 1, etc.) is a______? knows	some	symbols;	
will	vary.

Later 2- and 3-Year-Olds Coordinate the Number Core Components

Cardinality:	Continues to generalize perceptual subitizing to new configurations 
and extends to some instances of conceptual subitizing for 4 and 5: can	give	
number	for	1	to	5	things.

Number word list: Continues to extend and may be working on the irregular 
teen patterns and the early decade twenty to twenty-nine, etc., pattern: says	
1	to	10.

1-to-1 counting correspondences: Continues to generalize to counting new 
things, including pictures, and to extend accurate correspondences to larger 
sets (accuracy will vary with effort): counts	accurately	1	to	6	things.

Written number symbols: Continues to learn new symbols if given such learning 
opportunities.

Coordinates counting and cardinality into cardinal counting in	 which	 the	
last	counted	word	 tells	how	many	and	 (also	or	 later)	 tells	 the	cardinality	 (the	
number	in	the	set).
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Cardinality

The process of identifying the number of items in a small set (cardinal-
ity) has been called subitizing. We will call it perceptual subitizing to differ-
entiate it from the more advanced form we discuss later for larger numbers 
called conceptual subitizing (see Clements, 1999). For humans, the process 
of such verbal labeling can begin even before age 2 (see Chapter 3). It first 
involves objects that are physically present and then extends to nonpresent 
objects visualized mentally (for finer distinctions in this process, see Benson 
and Baroody, 2002). This is an extremely important conceptual step for 
attaching a number word to the perceived cardinality of the set. In fact, 
there is growing evidence that the number words are critical to toddlers’ 
construction of cardinal concepts of even small sets, like three and four and 
possibly one and two (Benson and Baroody, 2002; Spelke, 2003; also see 
Baroody, Lai, and Mix, 2006; and Mix, Sanhofer, and Baroody, 2005).

Children generally learn the first 10 number words by rote first and 
do not recognize their relation to quantity (Fuson, 1988; Ginsburg, 1977; 
Lipton and Spelke, 2006; Wynn, 1990). They do, however, begin to learn 
sets of fingers that show small amounts (cardinalities). This is an important 
process, because these finger numbers will become tools for adding and 
subtracting (see research literature summarized in Clements and Sarama, 
2007; Fuson, 1992a, 1992b). Interestingly, the conventions for counting on 
fingers vary across cultures (see Box 5-4).

In order to fully understand cardinality, children need to be able to both 
generalize and extend the idea. That is, they need to generalize from a spe-
cific example of two things (two crackers), to grasp the “two-ness” in any 
set of two things. They also need to extend their knowledge to larger and 
larger groups—from one and two to three, four, and five, although these 
are more difficult to see and label (Baroody, Lai, and Mix, 2006; Ginsburg, 
1989). Children’s early notions of cardinality and how and when they learn 
to label small sets with number words are an active area of research at 
present. The timing of these insights seems to be related to the grammatical 
structure of the child’s native language (e.g., see the research summarized 
in Sarnecka et al., 2007).

Later on, children can learn to quickly see the quantity in larger sets 
if these can be decomposed into smaller subitized numbers (e.g., I see two 
and three, and I know that makes fi�e). Following Clements (1999), we call 
such a process conceptual subitizing because it is based on visually appre-
hending the pair of small numbers rather than on counting them. Concep-
tual subitizing requires relating the two smaller numbers as addends within 
the conceptually subitized total. With experience, the move from seeing the 
smaller sets to seeing and knowing their total becomes so rapid that one can 
experience this as seeing 5 (rather than as seeing 2 and 3). Children may 
also learn particular patterns, such as the 5 pattern on a die. Because these 
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BOX 5-4 
Using Fingers to Count: Cultural Differences

	 Around	the	world,	most	children	learn	from	their	family	one	of	the	three	major	
ways	of	 raising	 (or	 in	 some	cultures,	 lowering)	 fingers	 to	 show	numbers.	All	 of	
these	methods	can	be	seen	in	centers	or	schools	with	children	coming	from	differ-
ent	parts	of	the	world,	as	well	as	some	less	frequent	methods	(the	Indian	counting	
on	cracks	of	fingers	with	the	thumb,	Japanese	lowering	and	raising	fingers).	The	
most	common	way	is	to	raise	the	thumb	first	and	then	the	fingers	in	order	across	
to	the	small	finger.	Another	way	is	to	raise	the	index	finger,	then	the	next	fingers	in	
order	to	the	smallest	finger,	and	then	the	thumb.	The	third	way	is	to	begin	with	the	
little	finger	and	move	across	in	order	to	the	thumb.	The	first	way	is	very	frequent	
throughout	Latin	America,	and	the	third	way	also	is	used	by	some	children	coming	
from	Latin	America.	The	second	way	is	the	most	usual	in	the	United	States.	It	is	
the	common	way	to	show	ages	(for	example,	 I am two years old	by	holding	up	
the	 index	and	 largest	finger).	This	method	allows	children	to	hold	down	unused	
fingers	with	 their	 thumb.	But	 the	other	 two	methods	show	numbers	 in	a	regular	
pattern	going	across	 the	fingers.	Children	 in	a	center	or	school	where	children	
show	numbers	on	fingers	 in	different	ways	may	come	to	use	multiple	methods.	
Because	fingers	are	such	an	 important	 tool	 for	numerical	problem	solving,	 it	 is	
probably	best	not	to	force	a	child	to	change	his	or	her	method	of	showing	numbers	
on	fingers	if	it	is	well	established.	It	is	important	for	teachers	to	be	aware	and	ac-
cepting	of	these	differences.

kinds of patterns can also be considered in terms of addends that compose 
them, they are included in conceptual subitizing. Such patterns can help 
older children learn mathematically important groups, such as five and ten; 
these are discussed in the later levels and in the relations and operation core 
discussion of addition and subtraction composing/decomposing.

Children also learn to assign a number to sets of entities they hear but 
do not see, such as drum beats or ringing bells. There is relatively little 
research on auditory quantities, and they play a much smaller role in ev-
eryday life or in mathematics than do visual quantities. For these reasons, 
and because auditory quantities relate to music and rhythm and body move-
ments, it seems sensible to have some activities in the classroom in which 
children repeat simple or complex sets they hear (clap clap or, later, clap 
clap clap pause clap clap), tell the number they hear (of bells, drumbeats, 
feet stamping, etc.), and produce sounds with body movements for particu-
lar quantities (Let me hear three claps).

In home and care/educational settings, it is important that early experi-
ences with subitizing be provided with simple objects or pictures. Textbooks 
or worksheets often present sets that discourage subitizing and depict col-
lections of objects that are difficult to count. Such complicating factors 
include embedded or overlapping pictures, complex noncompact things 
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or pictures (e.g., detailed animals of different sizes rather than circles or 
squares), lack of symmetry, and irregular arrangements (Clements and 
Sarama, 2007).

The importance of facilitating subitizing is underscored by a series of 
studies, which first found that children’s spontaneous tendency to focus on 
numerosity was related to counting and arithmetic skills, then showed that 
it is possible to enhance such spontaneous focusing, and then found that 
doing so led to better competence in cardinality tasks (Hannula, 2005). 
Increasing spontaneous focusing on numerosity is an example of helping 
children mathematize their environment (seek out and use the mathemati-
cal information in it). Such tendencies can stimulate children’s self-initiated 
practice in numerical skills because they notice those features and are in-
terested in them.

Number Word List

A common activity in many families and early childhood settings is 
helping a child learn the list of number words. Children initially may say 
numbers in the number word list in any order, but rapidly the errors take 
on a typical form. Children typically say the first part of the list correctly, 
and then may omit some numbers in the next portion of the list, or they say 
a lot of numbers out of order, often repeating them (e.g., one, two, three, 
four, five, eight, nine, four, five, two, six) (Fuson, 1988; Fuson, Richards, 
and Briars, 1982; Miller and Stigler, 1987; Siegler and Robinson, 1982). 
Children need to continue to hear a correct number list to begin to include 
the missing numbers and to extend the list.

Children can learn and practice the number word list by hearing and 
saying it without doing anything else, or it can be heard or said in coordina-
tion with another activity. Saying it alone allows the child to concentrate on 
the words, and later on the patterns in the words. However, it is also helpful 
to practice in other ways to link the number words to other aspects of the 
number core. Saying the words with actions (e.g., jumping, pointing, shak-
ing a finger) can add interest and facilitate the 1-to-1 correspondences in 
counting objects. Raising a finger with each new word can help in learning 
how many fingers make certain numbers, and flashing ten fingers at each 
decade word can help to emphasize these words as made from tens.

Counting: 1-to-1 Correspondences

In order to count a group of objects the person counting must use some 
kind of action that matches each word to an object. This often involves 
moving, touching or pointing to each object as each word is said. This 
counting action requires two kinds of correct matches (1-to-1 correspon-
dences): (1) the matching in a moment of time when the action occurs and a 
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word is said, and (2) the matching in space where the counting action points 
to an object once and only once. Children initially make errors in both of 
these kinds of correspondences (e.g., Fuson, 1988; Miller et al., 1995). They 
may violate the matching in time by pointing and not saying a word or by 
pointing and saying two or more words. They may also violate the match-
ing in space by pointing at the same object more than once or skipping an 
object; these errors are often more frequent than the errors in time.

Four factors strongly affect counting correspondence accuracy: 
(1) amount of counting experience (more experience leads to fewer errors), 
(2) size of set (children become accurate on small sets first), (3) arrange-
ment of objects (objects in a line make it easier to keep track of what has 
been counted and what has not), and (4) effort (see research reviewed in 
 Clements and Sarama, 2007, and in Fuson, 1988). Small sets (initially up 
to three and later also four and five) can be counted in any arrangement, 
but larger sets are easier to count when they are arranged in a line. Children 
ages 2 and 3 who have been given opportunities to learn to count objects 
accurately can count objects in any arrangement up to 5 and count objects 
in linear arrangements up to 10 or more (Clements and Sarama, 2007; 
Fuson, 1988).

In groundbreaking research, Gelman and Gallistel (1978) identified five 
counting principles that stimulated a great deal of research about aspects 
of counting. Her three how-to-count principles are the three mathematical 
aspects we have just discussed: (1) the stable order principle says that the 
number word list must be used in its usual order, (2) the one-one principle 
says that each item in a set must be tagged by a unique count word, and 
(3) the cardinality principle says that the last number word in the count list 
represents the number of objects in the set. Her two what-to-count prin-
ciples are mathematical aspects we have also discussed: (1) the abstraction 
principle states that any combination of discrete entities can be counted 
(e.g., heterogeneous versus homogeneous sets, abstract entities, such as the 
number of days in a week) and (2) the order irrele�ance principle states that 
a set can be counted in any order and yield the same cardinal number (e.g., 
counting from right to left versus left to right).

Gelman took a strong position that children understand these count-
ing principles very early in counting and use them in guiding their count-
ing activity. Others have argued that at least some of these principles are 
understood only after accurate counting is in place (e.g., Briars and Siegler, 
1984). Still others, taking a middle ground between the “principles before” 
view and the “principles after” view, suggest that there is a mutual (e.g., 
iterative) relation between understanding the count principles and count-
ing skill (e.g., Baroody, 1992; Baroody and Ginsburg, 1986; Fuson, 1988; 
Miller, 1992; Rittle-Johnson and Siegler, 1998).

Each of these aspects of counting is complex and does not necessarily 
exist as a single principle that is understood at all levels of complexity at 
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once. Children may initially produce the first several number words and not 
even separate them into distinct words (Fuson, Richards, and Briars, 1982). 
They may think that they need to say the number word list in order as they 
count, but early on they cannot realize the implication that they need a 
unique last counted word, or they would not repeat words so frequently as 
they say the number word list.

The what-to-count principles also cover a range of different under-
standings. It takes some time for children to learn to count parts of a thing 
(Shipley and Shepperson, 1990; Sophian and Kailihiwa, 1998), a later use 
of the abstraction principle. And the order irrelevance principle (counting 
in any order will give the same result) seems to be subject to expectations 
about what is conventional “acceptable” counting (e.g., starting at one end 
of a row rather than in the middle) as well as involving, later on, a deeper 
understanding of what is really involved in 1-to-1 correspondence: Count-

BOX 5-5 
Common Counting Errors

	 There	are	some	common	counting	errors	made	by	young	children	as	they	learn	
the	various	principles	that	underpin	successful	counting.	Counting	requires	effort	
and	continued	attention,	and	it	is	normal	for	4-year-olds	to	make	some	errors	and	
for	5-year-olds	to	make	occasional	errors,	especially	on	larger	sets	(of	15	or	more	
for	4-year-olds	and	of	25	or	more	for	5-year-olds).	Younger	children	may	initially	
make	quite	a	few	errors.	It	is	much	more	important	for	children	to	be	enthusiastic	
counters	who	enjoy	counting	than	for	them	to	worry	so	much	about	errors	that	they	
are	reluctant	to	count.	 If	one	looks	at	the	proportion	of	objects	that	receive	one	
word	and	one	point,	children’s	counting	often	is	pretty	accurate.	Letting	errors	go	
sometimes	or	even	somewhat	frequently	if	children	are	trying	hard	and	just	mak-
ing	the	top	four	kinds	of	errors	is	fine	as	long	as	children	understand	that	correct	
counting	requires	one	point	and	one	word	for	each	object	and	are	trying	to	do	that.	
As	with	many	physical	activities,	counting	will	improve	with	practice	and	does	not	
need	to	be	perfect	each	time.	Teachers	do	not	have	to	monitor	children’s	counting	
all	of	the	time.	It	is	much	more	important	for	all	children	to	get	frequent	counting	
practice	and	watch	and	help	each	other,	with	occasional	help	and	corrections	from	
the	teacher.
	 Very	young	children	counting	small	rows	with	high	effort	make	more	errors	in	
which	their	say-point	actions	do	not	correspond	than	errors	in	the	matching	of	the	
points	and	objects.	Thus,	they	may	need	more	practice	coordinating	their	actions	
of	saying	one	word	and	pointing	at	an	object.	Energetic	collective	practice	in	which	
children	rhythmically	say	the	number	word	list	and	move	down	their	hand	with	a	
finger	pointed	as	each	word	is	said	can	be	helpful.	To	vary	the	practice,	the	words	
can	sometimes	be	said	loudly	and	sometimes	softly,	but	always	with	emphasis	(a	
regular	beat).	The	points	can	involve	a	large	motion	of	the	whole	arm	or	a	smaller	
motion,	but,	again,	in	a	regular	beat	with	each	word.	Coordinating	these	actions	

of	saying	and	pointing	 is	 the	goal	 for	overcoming	 this	 type	of	error.	For	variety,	
these	activities	can	involve	other	movements,	such	as	marching	around	the	room	
with	rhythmic	arm	motions	or	stamping	a	foot	saying	a	count	word	each	time.
	 Counting	an	object	twice	or	skipping	over	an	object	are	errors	made	occasion-
ally	by	4-year-olds	and	even	by	5-year-olds	on	larger	sets.	These	seem	to	stem	
from	momentary	lack	of	attention	rather	than	lack	of	coordination.	Trying	hard	or	
counting	slowly	can	reduce	these	errors.	However,	when	two	counts	of	the	same	
set	disagree,	many	children	of	 this	age	think	 that	 their	second	count	 is	correct,	
and	they	do	not	count	again.	Learning	the	strategy	of	counting	a	third	time	can	
increase	the	accuracy	of	their	counts.	If	children	are	skipping	over	many	objects,	
they	need	to	be	asked	to	count carefully and don’t skip any.
	 Young	children	sometimes	make	multiple	count	errors	on	the	last	object.	They	
either	find	it	difficult	to	stop	or	think	they	need	to	say	a	certain	number	of	words	
when	counting	and	just	keep	on	counting	so	they	say	that	many.	When	they	say	
the	number	word	list,	more	words	are	better,	so	they	need	to	learn	that	saying	the	
number	word	 list	when	counting	objects	 is	controlled	by	 the	number	of	objects.	
Reminding	them	that	even	the	last	object	only	gets	one	word	and	one	point	can	
help.	They	also	may	need	the	physical	support	of	holding	their	hand	as	they	reach	
to	point	to	the	last	object	so	that	the	hand	can	be	stopped	from	extra	points	and	
the	last	word	is	said	loudly	and	stretched	out	(e.g.,	fii-i-i-ve)	to	inhibit	saying	the	
next	word.
	 Regularity	 and	 rhythmicity	 are	 important	 aspects	 of	 counting.	 Activities	 that	
increase	these	aspects	can	be	helpful	to	children	making	lots	of	correspondence	
errors.	Children	who	are	not	discouraged	about	their	counting	competence	gener-
ally	enjoy	counting	all	sorts	of	things	and	will	do	so	if	there	are	objects	they	can	
count	at	home	or	in	a	care	or	education	center.	Counting	in	pairs	to	check	each	
other	find	and	correct	errors	is	often	fun	for	the	pairs.	Counting	in	other	activities,	
such	as	building	towers	with	blocks,	should	also	be	encouraged.
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ing is correct if and only if each object receives one number word (LeFevre 
et al., 2006). An aspect of the 1-to-1 principle that is difficult even for high 
school students or adults to execute is remembering exactly which objects 
they have already counted with a large fixed set of objects scattered irregu-
larly around (such as in a picture) (Fuson, 1988).

The principles are useful in understanding children’s learning to count, 
but they should not be taken as simplistic statements that describe knowl-
edge that is all-or-nothing or that has a simple relationship to counting 
skill. It can be helpful for teachers or parents to make statements of vari-
ous aspects of counting (e.g., Remember that each object needs one point 
and one number word, You can’t skip any, Remember where you started in 
the circle so you stop just before that.). But children will continue to make 
counting errors even when they understand the task, because counting is a 
complex activity (see Box 5-5).

BOX 5-5 
Common Counting Errors

	 There	are	some	common	counting	errors	made	by	young	children	as	they	learn	
the	various	principles	that	underpin	successful	counting.	Counting	requires	effort	
and	continued	attention,	and	it	is	normal	for	4-year-olds	to	make	some	errors	and	
for	5-year-olds	to	make	occasional	errors,	especially	on	larger	sets	(of	15	or	more	
for	4-year-olds	and	of	25	or	more	for	5-year-olds).	Younger	children	may	initially	
make	quite	a	few	errors.	It	is	much	more	important	for	children	to	be	enthusiastic	
counters	who	enjoy	counting	than	for	them	to	worry	so	much	about	errors	that	they	
are	reluctant	to	count.	 If	one	looks	at	the	proportion	of	objects	that	receive	one	
word	and	one	point,	children’s	counting	often	is	pretty	accurate.	Letting	errors	go	
sometimes	or	even	somewhat	frequently	if	children	are	trying	hard	and	just	mak-
ing	the	top	four	kinds	of	errors	is	fine	as	long	as	children	understand	that	correct	
counting	requires	one	point	and	one	word	for	each	object	and	are	trying	to	do	that.	
As	with	many	physical	activities,	counting	will	improve	with	practice	and	does	not	
need	to	be	perfect	each	time.	Teachers	do	not	have	to	monitor	children’s	counting	
all	of	the	time.	It	is	much	more	important	for	all	children	to	get	frequent	counting	
practice	and	watch	and	help	each	other,	with	occasional	help	and	corrections	from	
the	teacher.
	 Very	young	children	counting	small	rows	with	high	effort	make	more	errors	in	
which	their	say-point	actions	do	not	correspond	than	errors	in	the	matching	of	the	
points	and	objects.	Thus,	they	may	need	more	practice	coordinating	their	actions	
of	saying	one	word	and	pointing	at	an	object.	Energetic	collective	practice	in	which	
children	rhythmically	say	the	number	word	list	and	move	down	their	hand	with	a	
finger	pointed	as	each	word	is	said	can	be	helpful.	To	vary	the	practice,	the	words	
can	sometimes	be	said	loudly	and	sometimes	softly,	but	always	with	emphasis	(a	
regular	beat).	The	points	can	involve	a	large	motion	of	the	whole	arm	or	a	smaller	
motion,	but,	again,	in	a	regular	beat	with	each	word.	Coordinating	these	actions	

of	saying	and	pointing	 is	 the	goal	 for	overcoming	 this	 type	of	error.	For	variety,	
these	activities	can	involve	other	movements,	such	as	marching	around	the	room	
with	rhythmic	arm	motions	or	stamping	a	foot	saying	a	count	word	each	time.
	 Counting	an	object	twice	or	skipping	over	an	object	are	errors	made	occasion-
ally	by	4-year-olds	and	even	by	5-year-olds	on	larger	sets.	These	seem	to	stem	
from	momentary	lack	of	attention	rather	than	lack	of	coordination.	Trying	hard	or	
counting	slowly	can	reduce	these	errors.	However,	when	two	counts	of	the	same	
set	disagree,	many	children	of	 this	age	think	 that	 their	second	count	 is	correct,	
and	they	do	not	count	again.	Learning	the	strategy	of	counting	a	third	time	can	
increase	the	accuracy	of	their	counts.	If	children	are	skipping	over	many	objects,	
they	need	to	be	asked	to	count carefully and don’t skip any.
	 Young	children	sometimes	make	multiple	count	errors	on	the	last	object.	They	
either	find	it	difficult	to	stop	or	think	they	need	to	say	a	certain	number	of	words	
when	counting	and	just	keep	on	counting	so	they	say	that	many.	When	they	say	
the	number	word	list,	more	words	are	better,	so	they	need	to	learn	that	saying	the	
number	word	 list	when	counting	objects	 is	controlled	by	 the	number	of	objects.	
Reminding	them	that	even	the	last	object	only	gets	one	word	and	one	point	can	
help.	They	also	may	need	the	physical	support	of	holding	their	hand	as	they	reach	
to	point	to	the	last	object	so	that	the	hand	can	be	stopped	from	extra	points	and	
the	last	word	is	said	loudly	and	stretched	out	(e.g.,	fii-i-i-ve)	to	inhibit	saying	the	
next	word.
	 Regularity	 and	 rhythmicity	 are	 important	 aspects	 of	 counting.	 Activities	 that	
increase	these	aspects	can	be	helpful	to	children	making	lots	of	correspondence	
errors.	Children	who	are	not	discouraged	about	their	counting	competence	gener-
ally	enjoy	counting	all	sorts	of	things	and	will	do	so	if	there	are	objects	they	can	
count	at	home	or	in	a	care	or	education	center.	Counting	in	pairs	to	check	each	
other	find	and	correct	errors	is	often	fun	for	the	pairs.	Counting	in	other	activities,	
such	as	building	towers	with	blocks,	should	also	be	encouraged.
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Written Number Symbols

Learning to read written number symbols is quite variable and de-
pends considerably on the written symbols in children’s environment and 
how often these are pointed out and read with a number word so that 
they can learn the symbol-word pair (Clements and Sarama, 2007; Mix, 
 Huttenlocher, and Levine, 2002). Unlike much of the number core discussed 
so far, learning these pairs is rote learning with hardly any possibility of 
finding and using sequential information. Component parts of particular 
numbers, or an overall impression (e.g., an 8 looks like a snowman) can 
be identified and discussed using perceptual learning principles (Baroody, 
1987; Baroody and Coslick, 1998; Gibson, 1969; Gibson and Levin, 1975). 
Learning to recognize the numerals is not a hugely difficult task, and 2- and 
3-year-olds can often read some numerals; 4-year-olds can learn to read 
many of the numerals to 10. Kindergarten children with such experiences 
can then concentrate on reading and understanding the numerals for the 
teens, and first graders can master the cardinal tens and ones connections 
in the numerals from 20 to 100 (see discussions at those levels).

Learning to write number symbols (numerals) is a much more difficult 
task than is reading them and often is not begun until kindergarten. Writing 
numerals requires children to have an accurate mental image of the symbol, 
which entails left-right orientation, and a motor plan to translate the mental 
image into the correct sequence of motor actions to form a numeral (e.g., 
see details in Baroody, 1987; Baroody and Coslick, 1998; Baroody and 
Kaufman, 1993). Some numerals are much easier than others. The loops 
in 6 and 9, the curve and straight line in the 2, and the crossovers in the 8 
are difficult but can be mastered by kindergarten children with effort. The 
easier numerals 1, 3, 4, 5, and 7 can often be mastered earlier. Whenever 
children do learn to write numerals, learning to write correct and readable 
numerals is not enough. They must become fluent at writing numerals (i.e., 
writing numerals must become overlearned) so that writing them as part of 
a more complex task is not so slow or effortful as to be discouraging when 
solving several problems. It is common for children at this step and even 
later to reverse some numerals (such as 3) because the left-right orientation 
is difficult for them. This will become easier with age and experience.

Coordinating the Components of the Number Core

We discussed above how children coordinate their knowledge of the 
number word list and 1-to-1 correspondences in time and in space to count 
groups of objects in space. They also gradually generalize what they can 
count and extend their accurate counting to larger sets and to sets in vari-
ous arrangements not in a row (circular, disorganized). However, accuracy 
for the latter comes quite late, except for small sets (Fuson, 1988). Gener-
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alization of counting involves taking as a unit each object they are counting 
so that each object can receive one count word. For example, when they are 
counting toy animals, each animal is a unit regardless of how big it is, what 
color it is, or what kind of animal it is. Later, 2- and 3-year-olds continue to 
generalize the range of objects they can count. Children with little experi-
ence with print may have more difficulty counting pictures of objects rather 
than objects themselves, and so they may especially need practice counting 
pictures of objects (Murphy and Wood, 1981).

The next crucial coordination of components is connecting counting 
and cardinality (Fuson, 1988; Gelman and Gallistel, 1978). When counting 
things (objects or pictures), the counting action matches each count word 
to one thing (see discussion above and in Chapter 2). But a cardinal num-
ber word refers to how many things there are in the whole set of things. 
So when anyone counts, they must at the end of the counting action make 
a mental shift from thinking of the last counted word as referring to the 
last counted thing to thinking of that word as referring to all of the things 
(the number of things in the whole set, i.e., the cardinality of the set). For 
example, when counting 7 toy animals 1, 2, 3, 4, 5, 6, 7, the 7 refers to the 
one last animal you count when you say 7. But then you must shift to think-
ing of all of the animals and think of the 7 as meaning all of them: There 
are 7 animals. This is a major conceptual milestone for young children.

When children discover this relationship, they tend to apply it to all 
counts no matter the size of the set of objects (Fuson, 1988). Therefore, this 
is a type of rule/principle of learning that children immediately generalize 
and apply fairly consistently. It is relatively easy to teach children that the 
last word said in counting tells how many there are (see Fuson, 1988). For 
example, a statement of this principle followed by three demonstrations 
followed by another statement of the principle was sufficient to move 20 
of 22 children ages 2 years 8 months to 3 years 11 months who did not use 
the principle to using it (Fuson, 1988).

However, not all children really understand cardinality, even when they 
understand the importance of the last counted word (Fuson, 1988). Some 
children initially understand only that the last word answers the “How 
many?” question. They do not fully grasp the more abstract idea of cardi-
nality. Thus, they give their last counted word when asked how many there 
are, but they do not point to all of the objects when asked the cardinal-
ity question “Show me the se�en animals.” Instead, they point at the last 
animal again. It is important to note that responding with the last word is 
progress. Earlier when asked “How many are there?” children may have 
recounted or given a number other than the last counted word. Children 
who recount are understanding the question “How many are there?” as 
a request to count, not as a cardinal request. Such children may recount 
several if the question is repeated and may protest But I already did it or 
I already said it because they don’t understand the reason for the repeated 



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

1�0 MATHEMATICS LEARNING IN EARLY CHILDHOOD

requests (to them, each count is a correct response to the How many are 
there? question). Children making the other error (giving a number that dif-
fers from the last word) are understanding that the question How many are 
there? is a request for cardinal information about the whole set, but they 
do not yet understand that the cardinal information is given by counting, 
and, in particular, by the last word said in counting.

Verbal knowledge is also required for full competence in discriminat-
ing the use of individual number words for each thing counted versus the 
use of the final number word to refer to the whole set. Even children who 
gesture correctly to show their count meaning (gesture to one thing) or their 
cardinal meaning (gesture to the whole set) may struggle with correct verbal 
expressions (see Box 5-6). Mastering these is a later achievement that will 
be learned with modeling and practice.

BOX 5-6 
Learning the Correct Counting Language

	 Learning	the	singular	and	plural	forms	that	go	with	counting	(single)	and	with	
cardinal	(plural)	references	to	objects	takes	some	time.	Here	are	typical	examples	
of	errors	that	children	initially	make	while	they	are	sorting	out	all	of	these	concep-
tual	and	linguistic	issues.	After	children	counted	a	row	of	objects,	they	were	asked	
a	count-reference	question	and	a	cardinality-reference	question	(the	order	varied	
across	children).	The	count-reference	question	was	Is this the soldier (chip) where 
you said n?	where	n	was	the	last	word	said	by	the	child.	The	experimenter	asked	
the	question	three	times	and	pointed	to	the	last	item,	the	next-to-last	item,	and	all	
the	items	in	the	row.	The	cardinal-reference	question	was	Are these the n soldiers 
(chips)? The	correct	answer	was	always	in	the	middle,	because	research	indicated	
that	young	children	have	a	strong	bias	toward	choosing	the	last	alternative.	In	the	
examples	below,	children	spontaneously	verbalized	cardinality	or	counting	refer-
ences	that	disagreed	with	their	gesture.

Response	to	cardinality	question:		Those are five soldiers,	said	as	child	points	to	
the	last	soldier.

Response	to	cardinality	question:		This one’s the five chips,	 said	as	child	points	
to	the	last	chip.

Response	to	cardinality	question:		This is the six soldiers,	said	as	child	points	to	
each	soldier	(said	six	times).

Response	to	cardinality	question:		This is the four chips,	 said	 as	 child	 points	 to	
the	last	chip.

Response	to	cardinality	question:		This is where I said chip four,	 said	 as	 child’s	
hands	gesture	to	all	of	the	chips.

Response	to	count	question:	 	All of these animals I said five.

SOURCE:	Fuson	(1988,	p.	232).
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Step 2 (Age 4 or Prekindergarten)

As children become acquainted with the components of number, they 
extend cardinal counting and conceptual subitizing to larger numbers. The 
major advances for children at this step who have had opportunities at 
home or in a care center to learn the previous foundational and achievable 
number core content involve extending their competency to larger numbers. 
This means that teachers or caregivers who must support children at differ-
ent levels, or support a mixture of children who have learned and those who 
have not had sufficient opportunity to learn the previous number core con-
tent, can frequently combine these groups by allowing children to choose 
set sizes with which they feel comfortable and can succeed (see Box 5-7).

BOX 5-7 
 Step 2 in the Number Core  
Age 4 or Prekindergarten

Extend Cardinal Counting and Conceptual Subitizing to Larger Numbers

	 Children	at	particular	ages/grades	may	exceed	the	specified	numbers	and	be	
able	to	work	correctly	with	larger	numbers.	The	numbers	for	each	age/grade	are	
the	foundational	and	achievable	content	for	children	at	this	age/grade.	The	major	
types	of	new	learning	for	each	age/grade	are	given	in	italics.	Each	level	assumes	
that	children	have	had	sufficient	learning	experiences	at	the	lower	level	to	learn	
that	content;	many	children	can	still	 learn	 the	content	at	a	 level	without	having	
fully	mastered	the	content	at	the	lower	level	 if	 they	have	sufficient	time	to	learn	
and	practice.

Cardinality:	Extends conceptual subitizing to 5-groups with 1, 2, 3, 4, 5 to see 
6 through 10: can	see	the	numbers	6,	7,	8,	9,	10	as	5	+	1,	5	+	2,	5	+	3,	5	+	4,	
5	+	5	and	can	relate	these	to	the	fingers	(5	on	one	hand).	May	do	other	such	
numerical	compose/decompose	patterns	also.

Number word list: Continues to extend and learns the irregular teen patterns 
and extends the early decade twenty to twenty-nine, etc., pattern to higher 
decades: says	1	to	39.

1-to-1 counting correspondences: Continues to generalize to counting new 
things and to extend accurate correspondences to larger sets (accuracy will 
vary with effort): counts	accurately	1	to	15	things	in	a	row.

Written number symbols:	Continues to learn new symbols if given such learning 
opportunities: reads	1	to	10;	writes	some	numerals.

Reverses the cardinal counting principle (the count-to-cardinal shift) to 
count out n things (makes the cardinal-to-count shift):	 Must have fluent 
counting to have the attentional space to remember the number to which you’re 
counting so you can stop there.
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Cardinality

Children at this level continue to extend to larger numbers their con-
ceptual subitizing of small groups to make a larger number, for example, 
I see one thumb and four fingers make my fi�e fingers (this is part of the 
relation and operation core and is discussed more there). The 5-groups 
are particularly important and useful. These 5-groups provide a good way 
to understand the numbers 6, 7, 8, 9, 10 as 5 + 1, 5 + 2, 5 + 3, 5 + 4, 
5 + 5 (see Figure 5-1). The convenient relationship to fingers (5 on one 
hand) provides a kinesthetic component as well as a visual aspect to this 
knowledge. Without focused experience with 5-groups, children’s notions 
of the numbers 6 through 10 tend to be hazy beyond a general sense that 
the numbers are getting larger. Knowing the 5-groups is helpful at the next 
level, as children add and subtract numbers 6 through 10; the patterns are 
problem-solving tools that can be drawn or used mentally. Children in East 
Asia learn and use these 5-group patterns throughout their early numerical 
learning (Duncan, Lee, and Fuson, 2000). Children can continue to experi-
ence and begin remembering other addends that make totals (e.g., 3 and 3 
make 6, 8 is 4 and 4).

Number Word List

As noted, beyond the first ten words, which are arbitrary in most 
languages (e.g., see the extensive review in Menninger, 1958/1969), most 
languages begin to have patterns that make them easier to learn. English, 
however, has irregularities that are challenging for children. A major dif-
ficulty in understanding the meaning of the teens words is that English 
words do not explicitly say the ten that is in the teen number (teen does 
not mean ten even to many adults), so English-speaking children can benefit 

FIGURE 5-1 Five groups to understand the numbers 6, 7, 8, 9, and 10.

5-groups that show 6 as 5 + 1, 7 as 5 + 2, 8 as 5 + 3,
9 as 5 + 4, and 10 as 5 + 5

Figure 5-1
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from visual representations that show the ten inside teen numbers in order 
to understand what quantities these words represent (see the discussion in 
the kindergarten level).

There are two patterns in the English number words from 20 to 100 
that children need to understand if each word is to have its value as some 
number of tens and some number of ones, as in Chinese words (52 is said 
as fi�e ten two). One is the irregular pattern in the decade words that name 
the tens multiples: twenty (twin-tens), thirty (three-tens), forty, fifty (fi�e 
tens), sixty, se�enty, eighty, ninety. As with the teens, the relationships of 
the decade words to the numbers below ten become really clear only for 
the last four words because only then are the six, se�en, eight, nine said. 
The irregularities in twenty through fifty interfere with seeing the meaning 
of these words as two tens, three tens, four tens, five tens, etc., and thus 
with learning these in order by using the list below ten, as Chinese-speaking 
children can do (see Chapter 4). Also, as with the teen words, the ten is not 
said explicitly but is said as a different suffix, –ty. Therefore, as discussed 
later for Grade 1, children need to work explicitly with groups of tens and 
ones to understand these meanings for the number words from 20 to 100.

The second pattern is the pattern of a decade word followed by the 
decade word with the numbers one through nine: twenty, twenty-one, 
twenty-two, twenty-three, . . . , twenty-nine. Children can begin to learn 
this second pattern quite early. Because the transition to ten and the teens 
words is not clear in English, children often initially do not stop at twenty-
nine but continue to count twenty-nine, twenty-ten, twenty-ele�en, twenty-
twel�e, twenty-thirteen (Fuson, 1988). This error can be a mixture of not 
yet understanding that the pattern ends at nine and difficulty stopping the 
usual counting at nine in order to shift to another decade.

Children in the United States tend to learn the pattern of the decade 
word followed by a number (1-9) before learning the order of the decade 
words (e.g., Fuson, 1988; Fuson, Richards, and Briars, 1982; Miller and 
Stigler, 1987; Siegler and Robinson, 1982). Although some 2- and 3-year-
olds begin learning and practicing the patterns for the teens and decade 
words, the teen pattern can be mastered by almost all 4-year-olds with 
support and practice, as can the early decades (two cycles of the pattern 
from twenty through thirty-nine). Many 4-year-olds learn more than this, 
but mastering the correct order of the decades and using this with the n-ty 
through n-ty-nine pattern is for many children a kindergarten achievement 
(e.g., Fuson, 1988; Fuson, Richards, and Briars, 1982; Miller et al., 1995). 
Structured learning experiences can decrease the time it takes to learn this 
pattern of decades to 100, but without such experiences this learning effort 
can continue even to age 6. Counting by tens to 100 to learn this decade 
sequence is a goal for kindergarten and is discussed in that section.
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Counting Correspondences

At this step, children extend considerably the set size they are able to 
count accurately. They move from considerable inaccuracy with counting 
larger sets to only occasional errors, even with large sets of 15 and above, 
unless the sets are arranged in a disorganized way and children are not able 
to move objects to keep track of which have been counted (i.e., make a 
counted and an uncounted pile) (Fuson, 1988). As before, effort continues 
to be important. Children who are tired or discouraged may make many 
more errors than they make after a simple prompt to try hard or count 
slowly. Children at this step also continue to generalize what they can 
count.

Children at this step are working on counting linear arrangements cor-
rectly in the teens or above, and many make few errors, showing consider-
ably more accuracy than children a year younger (Clements and Sarama, 
2007; Fuson, 1988). Of course, accurate counting also depends on knowing 
an accurate number word list, so accuracy with these larger sets depends 
on three things:

1. Knowing the patterns discussed above in the number word list so 
that a correct number word list can be said.

2. Correctly assigning one number word to one object (1-to-1 
correspondence).

3. Keeping track of which objects have already been counted so that 
they are not counted more than once.

Differentiating counted from uncounted entities is most easily done by 
moving objects into a counted set, but this is not possible with things that 
cannot be moved, such as pictures in a book. For pictures or objects that 
cannot be moved, counting objects arranged in a row is easiest because 
one can start at the end of a row and continue to the other end. However, 
if objects are arranged in a circle, children may initially count on and on 
around the circle. Strategies for keeping track of messy, large sets continue 
to develop for many years (Fuson, 1988), with even adults not being en-
tirely accurate.

Children in kindergarten who have had adequate counting experiences 
earlier continue to extend their counting of objects as high as 100, often 
with correct correspondences (and perhaps occasional errors). There may 
or may not still be errors in the number word list.

Written Number Symbols

Children at this step continue to extend the number of written number 
symbols they can read, now often reading many of the numerals 1, 2, 3, 
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4, 5, 6, 7, 8, 9, and 10. However, the 10 at this level means ten ones, the 
counted number ten that comes after nine. Not until the next level does it 
come to mean what the 10 symbols actually say: 1 ten and 0 ones. Children 
at this level can begin to write some numerals, often beginning with the 
easier numerals 1, 3, 4, and 7.

Counting Out “n” Things

Children at this level make one major conceptual advance. They move 
from knowing that the last number stated represents the amount in the 
group to knowing how to count out a given number of objects (Clements 
and Sarama, 2007; Fuson, 1988). Lots of counting of objects and saying the 
number word list enables their counting to become fluent enough that they 
can count out a specified number of things, for example, count out 6 things. 
Counting out n things requires a child to remember the number n while 
counting. This is more difficult for larger numbers because the child has to 
remember the number longer. So children may initially count past n because 
their counting is not fluent (overlearned) enough to count a long sequence 
of words, remember a number, and monitor with each count whether they 
have reached the number yet. Counting out a specified number is needed for 
solving addition and subtraction problems and for doing various real-life 
tasks, so this is an important milestone. Children can practice this concep-
tual task by counting out n things for various family and school purposes; 
such practice can also occur in game-like activities.

Counting out n things also requires a conceptual advance that is the 
reverse of learning that the last count word tells how many there are. To 
count out 6 things, a child is being told how many there are (a cardinal 
meaning) and must then shift to a count meaning of that 6 in order to moni-
tor the count words as they are said (Ha�e I said 6 yet?) so that they can 
stop when they say 6 as a counting word that corresponds to one object. 
They then have the set of 6 things they need.

Step 3 (Kindergarten)

At this step children work to integrate all of the core components of 
number. They are able to see that teen numbers are made up of tens and 
some ones. They also can come to understand that ten ones make one group 
of ten (see Box 5-8).

Kindergarten children can begin the process with seeing and making 
tens in teen numbers, and first graders can continue the process for tens 
and ones in numbers 20 to 100. At both grades this process helps children 
integrate the number components into a related web of cardinal, counting, 
and written number symbol knowledge. The first conceptual step is for chil-
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dren to understand each cardinal teen number as consisting of two groups: 
1 group of ten things and a group of the ones (the extra over ten). So, for 
example, 11 is 1 group of ten and 1 one (11 = 10 + 1), 14 is 1 group of ten 
and 4 ones (14 = 10 + 4), and 18 is 1 group of ten and 8 ones (18 = 10 + 8). 
The second crucial understanding that builds on the above is that ten ones 
equal one ten. That is, the written teen number symbols such as 18 mean 
1 group of ten (1 ten rather than ten ones) and 8 ones. Being able to see 
ten ones as one ten is a crucial step on the learning path.

It can be helpful for English-speaking children to have experiences 
seeing 18 things separated into ten and eight and relating these quantities 
to both the number words “eighteen is ten and eight” and to the written 
number symbols (18). It may also be helpful to use the written symbol ver-
sion of this as 18 = 10 + 8. Repeated experiences with all of these relation-

BOX 5-8 
Step 3 in the Number Core 

Age 5 or Kindergarten

Integrate All Core Components, See a Ten and Some Ones in Teen Numbers, 
Relate Ten Ones to One Ten, and Extend the Core Components to Larger 
Numbers

	 Children	at	particular	ages/grades	may	exceed	the	specified	numbers	and	be	
able	to	work	correctly	with	larger	numbers.	The	numbers	for	each	age/grade	are	
the	foundational	and	achievable	content	for	children	at	this	age/grade.	The	major	
types	of	new	learning	for	each	age/grade	are	given	in	italics.	Each	level	assumes	
that	children	have	had	sufficient	learning	experiences	at	the	lower	level	to	learn	
that	content;	many	children	can	still	 learn	 the	content	at	a	 level	without	having	
fully	mastered	the	content	at	the	lower	level	 if	 they	have	sufficient	time	to	learn	
and	practice.

Cardinality:	Extends conceptual subitizing to a new visual group, a group of tens: 
can	see	a	ten	in	each	teen	number	(18	=	10	+	8).

Number word list:	Extends to learn all of the decades in order as a new number 
word list counting by tens; uses this decade order with the decade pattern to 
count to 100 by ones: says	the	tens	list	10,	20,	30,	.	.	.	,	90,	100;	says	1	to	100	
by	ones.

1-to-1 counting correspondences: Continues to extend accurate correspon-
dences to larger sets; accuracy will still vary with effort: counts	25	things	in	a	
row	with	effort.

Written number symbols:	 Coordinates knowledge of symbols 1 to 9 to write 
teen numbers:	reads	and	writes	1	to	19;	reads	1	to	100	arranged	in	groups	of	
ten	when	counting	1	to	100.

Integrates all of the above for teen numbers	so	that	ten	ones	=	1	ten,	relating	
the	unitary	cardinality	relationship	ten ones + eight ones make eighteen ones	
to	the	written	symbols	18	as	10	with	an	8	on	top	of	the	0	ones	in	ten.
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ships can help children overcome the second kind of typical error in writing 
teen numbers, in which children write first what they say first. They hear 
eighteen and know that teens have a 1 in them (they may not yet think of 
this as one ten) and so they write 81.

Kindergarten children can also experience and learn all of the decade 
words in order from 20 to 100. Doing so while looking at a list of these 
number symbols grouped in tens can help to reinforce the pattern of the 
groups of ten.

Many states require that kindergarten children understand some as-
pects of money, but sometimes they have goals that are not sensible for 
this age group, even children who have had strong earlier mathematical 
experiences. The mathematical aspects of money that are most appropriate 
are the groups of ten pennies in dimes and the groups of five pennies in 
nickels. Children have been working with these cardinal groups of tens in 
this level and with 5-groups in the 4-year-old/prekindergarten level, so it is 
easy to build this understanding by extending this knowledge to coins by 
using any visual support that relates a 5-group of pennies to one nickel and 
one 10-group of pennies to one dime. Such supports were used successfully 
for first graders to construct the relationships for understanding two-digit 
numbers described next for first graders (Fuson, Smith, and Lo Cicero, 
1997; Hiebert et al., 1997).

Learning the values of a dime and a nickel are of course particularly 
complicated because their values are not in the order of the sizes of the 
coins. In size, a dime < a penny < a nickel, but in value a penny < a nickel 
< a dime. For this reason, it is too difficult to work with these coins alone 
rather than with visual supports that show the values of these coins in pen-
nies, as discussed above. Counting mixed collections of dimes, nickels, and 
pennies requires shifting counts from counting by tens when counting dimes 
to counting by fives when counting nickels to counting by ones when count-
ing pennies. Such shifts are too complex for many children at this level, es-
pecially if they are looking at the coins rather than looking at their values as 
pennies. Practice just on the names of the coins and on their visual features, 
rather than on their value as ones, fives, or tens, is also not appropriate. It 
is the quantitative values that are mathematically important.

Step 4 (Grade 1)

At this step children see, say, count, and write tens and ones from 1 
to 100 (see Box 5-9). To do this, they build on the integrations among 
cardinality, counting, and written number symbols that they have made 
in kindergarten. The major advance has two parts. First, children learn to 
count by two different units, units of ten and units of one. Second, they 
learn to shift from counting by units of ten to counting by units of one so 
that they can count cardinal sets up to 100. Children who have mastered 
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the kindergarten concept that ten ones equal one ten can learn to use visual 
representations of tens that show each ten as one ten.

Children at this step need to be able to make drawings of tens and of 
ones so that they can represent numbers to use when adding and subtract-
ing. Making such drawings can also help with the consolidation of the 
two-digit numerals, for example, 68 = 60 + 8 as sixty plus eight and as six 
tens plus eight. Place value cards in which the ones card covers the 0 in the 
tens card can also help eliminate the typical errors of children hearing 68 as 
sixty eight and therefore writing what they hear: 608 instead of 68.

BOX 5-9 
 Step 4 in the Number Core 

Grade 1

See, Say, Count, and Write Tens-Units and Ones-Units from 1 to 100

	 Children	at	particular	ages/grades	may	exceed	the	specified	numbers	and	be	
able	to	work	correctly	with	larger	numbers.	The	numbers	for	each	age/grade	are	
the	foundational	and	achievable	content	for	children	at	this	age/grade.	The	major	
types	of	new	learning	for	each	age/grade	are	given	in	italics.	Each	level	assumes	
that	children	have	had	sufficient	learning	experiences	at	the	lower	level	to	learn	
that	content;	many	children	can	still	 learn	 the	content	at	a	 level	without	having	
fully	mastered	the	content	at	the	lower	level	 if	 they	have	sufficient	time	to	learn	
and	practice.

Cardinality: Relates patterns in number word list to 100 to quantities of tens and 
of ones:	can	see	the	tens	and	ones	quantities	in	numbers	from	10	to	99	(e.g.,	
68	=	60	+	8);	sees	the	60	both	as	60	ones	(sixty)	and	as	6 tens;	can	make	drawn	
quantities	to	show	tens	and	ones.

Number word list: May count groups of ten using a tens list (1 ten, 2 tens, etc.) 
as well as the decade list 10, 20, 30,	.	.	.	.

1-to-1 counting correspondences: Extends counting single units to counting a 
group of ten as a 10-unit and shifts from counting these units of ten to counting 
by ones when counting left-over ones units: arranges	things	in	groups	of	ten	(or	
uses	prearranged	groups	or	drawings)	and	counts	the	groups	by	tens	and	then	
shifts	to	a	count	by	ones	for	the	leftover	single	things:	10,	20,	30,	40,	50,	60,	61,	
62,	63,	64,	65,	66,	67,	68,	or	1	ten,	2	tens,	3	tens,	4	tens,	5	tens,	6	tens,	6	tens	
and	1	one,	6	tens	and	2	ones,	6	tens	and	3	ones,	6	tens	and	4	ones,	6	tens	and	
5	ones,	6	tens	and	6	ones,	6	tens	and	7	ones,	6	tens	and	8	ones.

Written number symbols: Extends reading and writing to all two-digit numbers 1 
to 99 and understands that the tens digit refers to groups of tens and the ones 
digit refers to groups of ones; also	sees	that	the	0	from	the	tens	number	is	hiding	
behind	the	ones	number	so	can	see	68	as	60	+	8.

Integrates all of the above for numbers 1 to 100 so	that	n−ty = n tens	(e.g.,	60	
is	6	tens);	the	counting	by	tens	and	by	ones	represents	sets	of	tens	and	of	ones;	
a	2-digit	numeral	like	68	=	60	+	8	and	68	also	means	6	tens	and	8	ones.
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THE RELATIONS AND OPERATIONS CORE

The main mathematical categories in the relations and operations core 
were discussed in Chapter 2, and the steps through which our four age 
groups move were summarized in Box 5-2. These steps are elaborated in 
Box 5-10.

In the relations core, children learn to perceive, say, discuss, and create 
the relations more than, less than, and equal to on two sets. Initially they 
use general perceptual, or length, or density strategies to decide whether 
one set is more than, less than, or equal to another set. Gradually these are 
replaced by more accurate strategies: They match the entities in the sets to 
find out which has leftover entities, or they count both sets and use under-
standings of more than/less than order relations on numbers (see research 
reviewed in Clements and Sarama, 2007; Fuson, 1988). Eventually, in 
Grade 1, children begin to see the third set potentially present in relational 
situations, the difference between the smaller and the larger set (see research 
reviewed in Fuson, 1992a, 1992b). In this way, relational situations become 
the third kind of addition/subtraction situations: comparison situations.

In the operations core, children learn to see addition and subtraction 
situations in the real world by focusing on the mathematical aspects of 
those situations and making a model of the situation (called mathematizing 
these situations, as explained in Chapter 2). Initially such mathematizing 
may involve only focusing on the number of objects involved rather than on 
their color or their use (I see two red spoons and one blue spoon) and using 
those same objects to find the answer by refocusing on the total or counting 
it (I see three spoons in all). The three types of addition/subtraction situ-
ations that children must learn to solve were discussed in Chapter 2 and 
summarized in Box 2-4. These types are change plus/change minus, put 
together/take apart (sometimes called combine), and comparisons.

Addition and subtraction situations, and the word problems that de-
scribe such situations, provide many wonderful opportunities for learning 
language. Word problems are short and fairly predictable texts, so children 
can vary words in them while keeping much of the text. This enables them 
to say word problems in their own words and help everyone’s understand-
ing. English language learners can repeat such texts and vary particular 
words as they wish, all with the support of visual objects or acted-out 
situations. Although children need to learn the special mathematics vocabu-
lary involved in addition and subtraction, these problems also give them 
wonderful opportunities to integrate art (drawing pictures) and language 
practice and pretend play while also generalizing their growing mathemati-
cal knowledge.
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Levels in Children’s Numerical Solution Methods

There is a large research base from around the world describing three 
levels through which children’s numerical solution methods for addition and 
subtraction situations move (e.g., see the research summarized in Baroody, 
1987, 2004; Baroody, Lai, and Mix, 2006; Clements and Sarama, 2007, 
2008; Fuson, 1988, 1992a, 1992b; Ginsburg, 1983; Saxe, 1982; Sophian, 
1984). These levels are summarized in Box 5-11. At all levels, the solution 
methods require mathematizing the real-world situation (or later the word 
problem or the problem represented with numbers) to focus on only the 

BOX 5-10 
Steps in Addition/Subtraction Operations and Relations 

Step 1 (ages 2 and 3)

•	 Use	subitized	and	counted	cardinality	to	solve	situation	and	oral	number	word	
problems	with	totals	≤	5.

•	 Act	out	numerical	situations	with	objects	and	say	them	in	words;	see	answer	
at	the	end.

•	 Determine	that	something	is	bigger	or	has	more	using	perceptual,	length,	and	
density	strategies.

Examples	of	problems	they	can	solve:
•	 Change	plus:	Two	blocks	and	two	blocks	make	four	blocks.
•	 Change	minus:	Four	apples	take	away	one	apple	is	three	apples.
•	 Put	together/take	apart:	I	see	three	apples.	I	see	two	and	one	make	three.

Step 2 (age 4/prekindergarten)

•	 Use	conceptual	subitizing	and	cardinal	counting	to	solve	situation,	word,	and	
oral	number	word	problems	with	totals	≤	8.

•	 Solve	 numerical	 situations	 and	 word	 problems	 by	 modeling	 actions	 with	
objects,	fingers,	or	mentally	 (or	 just	know	the	answer);	or	see	or	count	 the	
answer.

•	 Solve	number	word	problems	by	modeling	actions	with	objects,	 fingers,	or	
mentally	(or	just	know	the	answer);	or	see	or	count	the	answer.

•	 Learn	the	partners	for	3,	4,	5	(e.g.,	5	=	4	+	1,	5	=	3	+	2).
•	 For	relations,	understand	and	say	this is/has less/fewer than that.
•	 For	more	than/less	than	relations	with	totals	≤	5,	act	out	or	show	situation,	

and	count	or	match	to	solve.

Examples	of	problems	they	can	solve:
•	 Change	plus:	Two	and	two	make	?

•	 Change	minus:	Four	take	away	one	is	?
•	 Put	together/take	apart:	Three	has	?	and	?

Step 3 (Kindergarten)

•	 Use	conceptual	subitizing	and	cardinal	counting	to	solve	situation,	word,	oral	
number	word,	and	written	numeral	problems	with	totals	≤	10.

•	 For	word	problems,	model	action	with	objects	or	fingers	or	a	math	drawing	
and	count	or	see	to	solve;	write	an	expression	or	equation.

•	 For	oral	or	written	numeral	problems,	use	fingers,	objects,	or	a	math	drawing	
to	solve.	

•	 Engage	in	learning	the	partners	for	6,	7,	8,	9,	10.
•	 For	relations,	act	out	or	show	with	objects	or	a	drawing,	then	count	or	match	

to	solve.
•	 Use	=,	≠	symbols.

Step 4 (Grade 1)

•	 Use	Level	2	or	Level	3	solution	procedures:	count	on	or	use	a	derived	fact	
method	 for	 problems	 with	 totals	 ≤	 18	 and	 find	 subtraction	 as	 an	 unknown	
addend.

•	 Solve	change	plus	problems	by	counting	on	to	find	the	total	6	+	3	=	?
•	 Solve	change	minus	problems	by	counting	on	 to	find	 the	unknown	addend	

9	–	6	=	?	is	6	+	?	=	9.
•	 Solve	put	together/take	apart	problems	by	counting	on	to	find	the	unknown	

addend	6	+	?	=	9.
•	 Advanced	 first	 graders	 use	 Level	 3	 solution	 procedures:	 (a)	 doubles	 and	

doubles	±	1.	(b)	they	experience	make-a-ten	methods:	8	+	6	=	8	+	2	+	4	=	
10	+	4	=	14;	14	–	8	is	8	+	?	=	14,	so	8	+	2	+	4	=	14,	so	?	=	6	(not	all	children	
master	these	in	Grade	1).

•	 Solve	 comparison	 situations	 or	 determine	 how	 much/many	 more/less	 by	
counting	or	matching	for	totals	≤	10,	then	for	totals	≤	18.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

PATHS FOR NUMBER, RELATIONS, AND OPERATIONS 151

mathematical aspects—the numbers of things and the additive or subtrac-
tive operation in the situation. As we discuss each level, we also describe 
ways in which children can be helped to learn methods appropriate for 
that level and the prerequisite knowledge. Children need opportunities to 
relate strategies to actual objects or pictures of objects and to discuss and 
explain their thinking.

The solution methods at Level 1 use direct modeling of every object. In 
direct modeling children must carry out the actions in the situation using 
actual objects or fingers. Until around age 6, children primarily use such 
direct modeling to solve situations presented in objects, word problems 

BOX 5-10 
Steps in Addition/Subtraction Operations and Relations 

Step 1 (ages 2 and 3)

•	 Use	subitized	and	counted	cardinality	to	solve	situation	and	oral	number	word	
problems	with	totals	≤	5.

•	 Act	out	numerical	situations	with	objects	and	say	them	in	words;	see	answer	
at	the	end.

•	 Determine	that	something	is	bigger	or	has	more	using	perceptual,	length,	and	
density	strategies.

Examples	of	problems	they	can	solve:
•	 Change	plus:	Two	blocks	and	two	blocks	make	four	blocks.
•	 Change	minus:	Four	apples	take	away	one	apple	is	three	apples.
•	 Put	together/take	apart:	I	see	three	apples.	I	see	two	and	one	make	three.

Step 2 (age 4/prekindergarten)

•	 Use	conceptual	subitizing	and	cardinal	counting	to	solve	situation,	word,	and	
oral	number	word	problems	with	totals	≤	8.

•	 Solve	 numerical	 situations	 and	 word	 problems	 by	 modeling	 actions	 with	
objects,	fingers,	or	mentally	 (or	 just	know	the	answer);	or	see	or	count	 the	
answer.

•	 Solve	number	word	problems	by	modeling	actions	with	objects,	 fingers,	or	
mentally	(or	just	know	the	answer);	or	see	or	count	the	answer.

•	 Learn	the	partners	for	3,	4,	5	(e.g.,	5	=	4	+	1,	5	=	3	+	2).
•	 For	relations,	understand	and	say	this is/has less/fewer than that.
•	 For	more	than/less	than	relations	with	totals	≤	5,	act	out	or	show	situation,	

and	count	or	match	to	solve.

Examples	of	problems	they	can	solve:
•	 Change	plus:	Two	and	two	make	?

•	 Change	minus:	Four	take	away	one	is	?
•	 Put	together/take	apart:	Three	has	?	and	?

Step 3 (Kindergarten)

•	 Use	conceptual	subitizing	and	cardinal	counting	to	solve	situation,	word,	oral	
number	word,	and	written	numeral	problems	with	totals	≤	10.

•	 For	word	problems,	model	action	with	objects	or	fingers	or	a	math	drawing	
and	count	or	see	to	solve;	write	an	expression	or	equation.

•	 For	oral	or	written	numeral	problems,	use	fingers,	objects,	or	a	math	drawing	
to	solve.	

•	 Engage	in	learning	the	partners	for	6,	7,	8,	9,	10.
•	 For	relations,	act	out	or	show	with	objects	or	a	drawing,	then	count	or	match	

to	solve.
•	 Use	=,	≠	symbols.

Step 4 (Grade 1)

•	 Use	Level	2	or	Level	3	solution	procedures:	count	on	or	use	a	derived	fact	
method	 for	 problems	 with	 totals	 ≤	 18	 and	 find	 subtraction	 as	 an	 unknown	
addend.

•	 Solve	change	plus	problems	by	counting	on	to	find	the	total	6	+	3	=	?
•	 Solve	change	minus	problems	by	counting	on	 to	find	 the	unknown	addend	

9	–	6	=	?	is	6	+	?	=	9.
•	 Solve	put	together/take	apart	problems	by	counting	on	to	find	the	unknown	

addend	6	+	?	=	9.
•	 Advanced	 first	 graders	 use	 Level	 3	 solution	 procedures:	 (a)	 doubles	 and	

doubles	±	1.	(b)	they	experience	make-a-ten	methods:	8	+	6	=	8	+	2	+	4	=	
10	+	4	=	14;	14	–	8	is	8	+	?	=	14,	so	8	+	2	+	4	=	14,	so	?	=	6	(not	all	children	
master	these	in	Grade	1).

•	 Solve	 comparison	 situations	 or	 determine	 how	 much/many	 more/less	 by	
counting	or	matching	for	totals	≤	10,	then	for	totals	≤	18.
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(situations expressed in words, perhaps with an accompanying picture), 
oral numerical problems such as three plus two, and written numerical 
problems such as 3 + 2. Chapter 4 summarized research reporting that more 
children from low-income families had trouble with the last three kinds of 
problems than with the first kind and than did their middle-income peers. 
Therefore, such children especially need help and practice in generating 
models using objects or fingers for such situations.

At Grade 1, children who have not yet moved to the Level 2 general 
counting on methods (see Box 5-8 and Box 5-11 for more details) can do so 
with help. In these methods, children shift from the cardinal meaning of the 
first addend to the counting meaning as they count on from it: For 5 + 2, 
they think fi�e, shift to the counting word fi�e in the number word list, and 
count on two more words—fi�e, six, se�en. This ability to count on can be 

BOX 5-11 
Levels in Children’s Numerical Solution Methods

Level 1:	Direct modeling	of	all	quantities	 in	a	situation;	used	at	 the	first	 three	
number/operation	levels:

Counting all:	Count	out	things	or	fingers	for	one	addend,	count	out	things	or	
fingers	for	the	other	addend,	and	then	count	all	of	the	things	or	fingers.

Take away:	Count	out	things	or	fingers	for	the	total,	take	away	the	known	ad-
dend	number	of	 things	or	fingers,	and	then	count	 the	things	or	fingers	that	
are	left.

Level 2: Count on	can	be	done	in	first	grade	(some	children	can	do	so	earlier):	
They	use	embedded	number	understanding	to	see	the	first	addend	within	the	total	
and	so	see	that	they	do	not	need	to	count	all	of	the	total,	but	instead	could	make	
a	cardinal-to-count	shift	and	count	on	from	the	first	addend.

Count on to find the total:	On	fingers	or	with	objects	or	with	conceptual	subi-
tizing,	children	keep	track	of	how	many	words	to	count	on	so	that	they	stop	
when	they	have	counted	on	the	second	addend	number	of	words	and	the	last	
word	they	say	is	the	total:

6	+	3	=	?	would	be	“six,	seven,	eight,	nine,	so	the	total	is	nine.	I	counted	
on	3	more	from	6	to	make	9.”

After	 learning	counting	on	from	the	first	addend,	children	learn	to	count	on	
from	the	larger	addend.

Count on to find the unknown addend:	Children	stop	counting	when	they	say	
the	total,	and	the	fingers	(or	other	keeping	track	method)	tell	the	answer	(the	
unknown	addend	number	of	words	they	counted	on	past	the	first	addend).

6	+	?	=	9	would	be	“six,	seven,	eight,	nine,	so	I	added	on	3	to	6	to	make	9.	
I	counted	on	3	more	from	6	to	make	9.	Three	is	my	unknown	addend.”

Level 3:	Derived fact methods	in	which	known	facts	are	used	to	find	related	facts	
(mastery	by	some/many	at	first	grade).

Doubles	are	totals	of	two	of	the	same	addend:	1	+	1,	2	+	2,	3	+	3,	etc.,	up	to	
9	+	9.	These	are	learned	by	many	children	in	the	United	States	because	of	
the	easy	pattern	in	their	totals	(2,	4,	6,	8,	etc.).	Doubles ± 1 is	a	Level	3	more	
advanced	strategy	that	uses	a	related	double	to	find	the	total	of	two	addends	
in	which	one	addend	is	one	more	or	less	than	the	other	addend	(6	+	7	=	6	+	
6	+	1	=	12	+	1	=	13).

Make-a-ten methods	are	general	methods	for	adding	or	subtracting	to	find	a	
teen	total	by	changing	a	problem	into	an	easier	problem	involving	10.	Chil-
dren	first	make	a	10	from	the	first	addend	and	then	learn	to	make	a	10	from	
the	larger	addend.

Make a ten to find a total:	8	+	6	becomes	10	+	4	by	separating	the	6	into	
the	amount	that	makes	10	with	the	8.	Then	solving	6	=	2	+	?	gives	the	
leftover	4	within	the	6	to	become	the	ones	number	in	the	teen	total:	8	+	
6	=	8	+	2	+	4	=	10	+	4	=	14.

Make a ten to find an unknown addend:	14	−	8	=	?	is	8	+	?	=	14,	so	8	+	2	
is	10	plus	the	4	in	14	makes	14.	So	8	+	6	=	14.	In	this	method	subtraction	
requires	adding,	which	is	easier	than	making	a	ten	to	find	a	total.	The	first	
step	can	also	be	thought	of	as	subtracting	the	8	from	10.

Three prerequisites	for	fluency	with	make-a-ten	methods	can	be	built	up	
before	first	grade:
1.	 knowing	the	number	that	makes	10	(the	partner	to	10)	for	each	num-

ber	3	to	9;
2.	 knowing	each	teen	number	as	a	10	and	some	ones	(e.g.,	knowing	that	

14	=	10	+	4	and	that	10	+	4	=	14	without	counting);	and
3.	 knowing	all	the	partners	of	numbers	3	to	9	so	that	the	second	number	

can	be	broken	into	a	partner	to	make	10	and	the	leftover	partner	that	
will	make	the	teen	number.
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facilitated by children’s earlier work with embedded number experiences 
of finding partners of a total (e.g., Inside se�en, I see fi�e and two) and by 
fluency with the count word sequence, so they can begin counting from any 
number (most 2-, 3-, and 4-year-olds need to start at 1 when counting and 
cannot start from just any number). With larger second addends, children 
also need a method of keeping track of how many they have counted on. 
These counting on methods are sufficient for all further quantitative work, 
especially if children are helped to see subtraction as finding an unknown 
addend, so that they can use counting on to find that addend. Counting 
down to subtract is difficult, and children make many errors at it (Baroody, 
1984; Fuson, 1984). Just counting backward is difficult, and children make 
various count-cardinal errors in counting down. Counting forward to find 
an unknown addend for subtraction (e.g., solving 9 − 5 = ? as 5 + ? = 9) 

BOX 5-11 
Levels in Children’s Numerical Solution Methods

Level 1:	Direct modeling	of	all	quantities	 in	a	situation;	used	at	 the	first	 three	
number/operation	levels:

Counting all:	Count	out	things	or	fingers	for	one	addend,	count	out	things	or	
fingers	for	the	other	addend,	and	then	count	all	of	the	things	or	fingers.

Take away:	Count	out	things	or	fingers	for	the	total,	take	away	the	known	ad-
dend	number	of	 things	or	fingers,	and	then	count	 the	things	or	fingers	that	
are	left.

Level 2: Count on	can	be	done	in	first	grade	(some	children	can	do	so	earlier):	
They	use	embedded	number	understanding	to	see	the	first	addend	within	the	total	
and	so	see	that	they	do	not	need	to	count	all	of	the	total,	but	instead	could	make	
a	cardinal-to-count	shift	and	count	on	from	the	first	addend.

Count on to find the total:	On	fingers	or	with	objects	or	with	conceptual	subi-
tizing,	children	keep	track	of	how	many	words	to	count	on	so	that	they	stop	
when	they	have	counted	on	the	second	addend	number	of	words	and	the	last	
word	they	say	is	the	total:

6	+	3	=	?	would	be	“six,	seven,	eight,	nine,	so	the	total	is	nine.	I	counted	
on	3	more	from	6	to	make	9.”

After	 learning	counting	on	from	the	first	addend,	children	learn	to	count	on	
from	the	larger	addend.

Count on to find the unknown addend:	Children	stop	counting	when	they	say	
the	total,	and	the	fingers	(or	other	keeping	track	method)	tell	the	answer	(the	
unknown	addend	number	of	words	they	counted	on	past	the	first	addend).

6	+	?	=	9	would	be	“six,	seven,	eight,	nine,	so	I	added	on	3	to	6	to	make	9.	
I	counted	on	3	more	from	6	to	make	9.	Three	is	my	unknown	addend.”

Level 3:	Derived fact methods	in	which	known	facts	are	used	to	find	related	facts	
(mastery	by	some/many	at	first	grade).

Doubles	are	totals	of	two	of	the	same	addend:	1	+	1,	2	+	2,	3	+	3,	etc.,	up	to	
9	+	9.	These	are	learned	by	many	children	in	the	United	States	because	of	
the	easy	pattern	in	their	totals	(2,	4,	6,	8,	etc.).	Doubles ± 1 is	a	Level	3	more	
advanced	strategy	that	uses	a	related	double	to	find	the	total	of	two	addends	
in	which	one	addend	is	one	more	or	less	than	the	other	addend	(6	+	7	=	6	+	
6	+	1	=	12	+	1	=	13).

Make-a-ten methods	are	general	methods	for	adding	or	subtracting	to	find	a	
teen	total	by	changing	a	problem	into	an	easier	problem	involving	10.	Chil-
dren	first	make	a	10	from	the	first	addend	and	then	learn	to	make	a	10	from	
the	larger	addend.

Make a ten to find a total:	8	+	6	becomes	10	+	4	by	separating	the	6	into	
the	amount	that	makes	10	with	the	8.	Then	solving	6	=	2	+	?	gives	the	
leftover	4	within	the	6	to	become	the	ones	number	in	the	teen	total:	8	+	
6	=	8	+	2	+	4	=	10	+	4	=	14.

Make a ten to find an unknown addend:	14	−	8	=	?	is	8	+	?	=	14,	so	8	+	2	
is	10	plus	the	4	in	14	makes	14.	So	8	+	6	=	14.	In	this	method	subtraction	
requires	adding,	which	is	easier	than	making	a	ten	to	find	a	total.	The	first	
step	can	also	be	thought	of	as	subtracting	the	8	from	10.

Three prerequisites	for	fluency	with	make-a-ten	methods	can	be	built	up	
before	first	grade:
1.	 knowing	the	number	that	makes	10	(the	partner	to	10)	for	each	num-

ber	3	to	9;
2.	 knowing	each	teen	number	as	a	10	and	some	ones	(e.g.,	knowing	that	

14	=	10	+	4	and	that	10	+	4	=	14	without	counting);	and
3.	 knowing	all	the	partners	of	numbers	3	to	9	so	that	the	second	number	

can	be	broken	into	a	partner	to	make	10	and	the	leftover	partner	that	
will	make	the	teen	number.
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is much easier and can make subtraction as easy as addition (e.g., Fuson, 
1986b; Fuson and Willis, 1988). It also emphasizes addition and subtrac-
tion as inverse operations.

The derived fact methods (Level 3) are mastered by some children 
at Grade 1, depending on how many of the prerequisites shown in Box 
5-8 have been made accessible for 4- and 5-year-olds and then have been 
practiced so that they become fluent. These methods require recomposing 
the given numbers into a new, easier problem (e.g., 9 + 4 becomes 10 + 3). 
The make-a-ten methods are taught in East Asian countries and are very 
useful in multidigit computation (see the discussion in Chapter 2). The 
prerequisites are discussed later in the summaries of the 4- and 5-year-olds 
because children can begin building these prerequisites then. Enabling 4- 
and 5-year-olds to learn the prerequisites for the counting on and derived 
facts methods can help low-income children to learn more advanced strate-
gies, which fewer of them do now. This can also help children with learning 
difficulties in mathematics because they often continue to use the Level 1 
modeling methods for too many years unless they are helped to learn more 
advanced strategies. The general counting on methods for addition and 
subtraction can be learned meaningfully and done accurately and rapidly 
by most children in Grade 1 (Fuson, 2004).

Throughout the process of learning and using more advanced ap-
proaches to solving addition and subtraction problems, children also be-
come fluent with individual sums and differences. Small numbers, such as 
plus 1 and minus one, and doubles (2 + 2, 3 + 3) become fluent early. Others 
become fluent over time.

Step 1 (Ages 2 and 3)

Children at this step use subitized and counted cardinality to solve situa-
tion and oral number word problems. They also use perceptual, length, and 
density strategies to find which is more with totals ≤ 5 (see Box 5-10).

Relations: More Than, Equal To, Less Than

Children ages 2 and 3 begin to learn the language involved in rela-
tions (Clements and Sarama, 2007, 2008; Fuson, 1992a, 1992b; Ginsburg, 
1977). More is a word learned by many children before they are 2. Initially 
it is an action directive that means: Gi�e me more of this. But gradually 
children become able to use perceptual subitizing and length or density 
strategies to judge which of two sets has more things: She has more than I 
ha�e. Such comparisons may not be correct at this age level if the sets are 
larger than three because children focus on length or on density and cannot 
yet coordinate these dimensions or use the strategies of matching or count-
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ing effectively (see research reviewed in Fuson, 1988, 1992a, 1992b, and 
in Clements and Sarama, 2007, 2008).

Operations: Addition and Subtraction

The 2- and 3-year-old children can solve change plus/change minus 
situations and put together/take apart situations with small numbers (to-
tals ≤ 5) if the situation is presented with objects or if they are helped to 
use objects to model these situations (Clements and Sarama, 2007; Fuson, 
1988). Children can have experience in learning how to do such adding and 
subtracting from family members, in child care centers, and from media 
such as television and CDs. Children may subitize groups of one and two 
or count these or somewhat larger numbers. To find the total, they may 
count or put together the subitized quantity into a pattern that is also just 
seen and not really counted (e.g., two and two make four).

Step 2 (Age 4 or Prekindergarten)

At this step, children learn to use conceptual subitizing and cardinal 
counting to solve situation, word, and oral number word problems with 
totals ≤ 8 and begin to count and to match to find out which set has more 
or less (see Box 5-10).

Cardinal counters at this age level can extend their understanding of 
relations and of all of the addition/subtraction situations and generalize 
them to a wider range of settings because their real-world knowledge is 
more extensive than it was at the previous level. Children can now also 
count out a specified number of objects, so they can carry out the count all 
and take away solution methods (Level 1 in Box 5-11) for numbers in their 
counting accuracy range. They also begin to use counting and matching as 
well as the earlier perceptual strategies to find which of two sets is more 
and begin to learn the meaning of the word less.

Relations

Children at this level continue to use the perceptual strategies they 
used earlier (general perceptual, length, density) but they can also begin 
to use matching and counting to find which is less and which is more (see 
research summarized in Clements and Sarama, 2007, 2008; Fuson, 1988, 
1992a, 1992b; Sophian, 1988). However, they can also be easily misled by 
perceptual cues. For example, the classic tasks used by Piaget (1941/1965) 
involved two rows of objects in which the objects in one row were moved 
apart so one row was longer (or occasionally, moved together so one row 
was shorter). Many children ages 4 and 5 would say that the longer row has 
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more. These children focused either on length or on density, but they could 
not notice and coordinate both. However, when asked to count in such 
situations, many 4-year-olds can count both rows accurately, remember 
both count words, and change them to cardinal numbers and find the order 
relation on the cardinal numbers (Fuson, 1988). Thus, many 4-year-olds 
need encouragement to count in more than/less than/equal to situations, 
especially when the perceptual information is misleading.

To use matching successfully to find more than/less than, children may 
need to learn how to match by drawing lines visually to connect pairs or 
draw such matching lines if the compared sets are drawn on paper. Then 
they need to know that the number with any extra objects is more than the 
other set. It is also helpful to match using actual objects.

To use counting successfully, children need to be able to count both 
sets accurately and remember the first count result while counting the sec-
ond set. Here is another example of the need for fluency in counting (see 
Box 5-1). Without such fluency, some children forget their first count result 
by the time they have counted the second set. They need more counting 
practice in such situations. Children also need to know order relations on 
cardinal numbers. They need to learn the general pattern that most children 
do derive from the order of the counting words: The number that tells more 
is farther along (said later) in the number word list than the smaller number 
(e.g., Fuson, Richards, and Briars, 1982). Activities in which children make 
sets for both numbers, match them in rows and count them, and discuss the 
results can help them establish this general pattern.

There was an early period in which the counting and matching research 
had not been done and many researchers and educators suggested that 
teachers had to wait until children conserved number (said that rows in the 
classic Piagetian task were equal even in the face of misleading perceptual 
transformations) to do any real number activities, such as adding and sub-
tracting. However, newer research shows that there is a crucial stage for 
4- and 5-year-olds in which using counting and matching are important to 
learn and can lead to correct relational judgments (see the research sum-
marized in Clements and Sarama, 2007, 2008; Fuson, 1992a, 1992b). It is 
true that children typically do not understand that the rows are equal out of 
a logical necessity until age 6 or 7 (sometimes not until age 8). These older 
children (ages 6-7) judge the rows to be equal based on mental transforma-
tions that they apply to the situation. They do not see the need to count 
or match after one row is made shorter or longer by moving objects in it 
together or apart to see that they are equal. They are certain that simply 
moving the objects in the set does not change the numerosity. This is what 
Piaget meant by conservation of number. But children can work effectively 
with situations involving more and less long before they demonstrate this 
meaning of conservation of number.

For progress in relations, it is important that children hear, and try 
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to use, the less common comparative terms such as less, shorter, smaller 
instead of only hearing or using more, taller, bigger. Initially some children 
think that less means more because almost all of their experience has been 
focused on selecting the set with more (e.g., Fuson, Carroll, and Landis, 
1996). So children need to hear many examples of fewer and less, although 
it is not vital that they differentiate these from each other because that is 
difficult (fewer is used with things you can count, less is used with measured 
quantities and with numbers). Teachers can also use the comparative terms 
(for example, bigger and smaller rather than just big and small) so that 
children gain experience with them, although all children may not become 
fluent in their use at this level.

Operations

Problems expressed in words (word problems) can now be solved, 
although many children may need to act out some word problems in order 
to understand the meanings of the situation or of some of the words (see 
research summarized in Fuson 1992a, 1992b). Through such experiences 
relating actions and words, children gradually extend their vocabulary of 
words that mean to add—in all, put together, altogether, total—and of 
words that mean to subtract—are left, take away, eat, break. Discussing 
and sharing solutions to word problems and acting out addition/subtraction 
situations can provide extended experiences for language learning. Children 
can begin posing such word problems as well as solving them, although 
many will need help with asking the questions, the most difficult aspect of 
posing word problems. As with all language learning, it is very important 
for children to talk and to use the language themselves, so having them 
retell a word problem in their own words is a powerful general teaching 
strategy to extend their knowledge and give them practice speaking in 
English.

Drawing the solution actions using circles or other simple shapes in-
stead of pictures of real objects can be helpful. The two addends can be 
separated just by space or encircled separately or separated by a vertical line 
segment. Some children can also begin to make mathematical drawings to 
show their solutions. Teacher and child drawings leave a visual record of 
the full solution that facilitates children’s reflecting on the solution, as well 
as discussing and explaining it. For children, making math drawings is also 
a creative activity in which they are somehow showing in space actions that 
occur over time. Children do this in various interesting ways that can lead 
to productive discussions.

Children also become able to use their fingers to add or to subtract 
using the direct modeling solution methods counting all or taking away 
(see Box 5-11, Level 1). When counting all, they will count out and raise 
fingers for the first addend, then for the second addend, and then count all 
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of the raised fingers. (See Box 5-4 for a discussion of different conventions 
for counting on fingers.)

Some children learn at home or in a care center to put the addends on 
separate hands, while others continue on to the next fingers for the second 
addend. The former method makes it easier to see the addends, and the lat-
ter method makes it easier to see the total. Both methods can be modeled by 
the teacher. As children become more and more familiar with which group 
of fingers makes 4 or 5 or 7 fingers, they may not even have to count out 
the total because they can feel or see the total fingers. Similarly, children 
using the method of putting fingers on separate hands eventually can just 
raise the fingers for the addends without counting out the fingers. But they 
do need initially to count the total. Children who put addends on separate 
hands may have difficulty with problems with addends over 5 (e.g., 6 + 3) 
because one cannot put both such numbers on a separate hand. They can, 
however, continue raising fingers from 6 fingers. Because these problems 
involve adding 1 or 2, such continuations of 1 and 2 are relatively easy.

By now children who have had experience with adding and subtracting 
situations when they were younger can generalize to solve decontextualized 
problems that are posed numerically, as in Two and two make how many? 
(Clements and Sarama, 2007; Fuson, 1988). For some small numbers, chil-
dren may have solved such a problem so many times that they know the 
answer as a verbal statement: Two and two make four. If such knowledge 
is fluent, children may be able to use it to solve a more complex unknown 
addend problem. For example, Two and how many make four? Two.

For larger numbers, children will need to use objects or fingers to 
carry out a counting all or taking away solution procedure (Box 5-11) (see 
research summarized in Fuson 1992a, 1992b). Children will learn new 
composed/decomposed numerical triads as they have such experiences. 
The doubles that involve the same addends (2 is 1 and 1, 4 is 2 and 2, 6 
is 3 and 3, 8 is 4 and 4) are particularly easy for children to learn because 
the perceptual and verbal task is simplified by have the same addends (e.g., 
see research summarized in Fuson, 1992a, 1992b). The visual 5-groups 
(e.g., 8 is made from 5 and 3) discussed for the number core are also use-
ful. Research about powerful patterns for conceptual subitizing for very 
small numbers would be helpful, including the extent to which flexibility 
is important beyond a single powerful visual core that will work for all 
numbers.

The put together/take apart situations, and especially the take apart 
situation, can be used to provide varied numerical experiences with given 
numbers that help children see all of the addends (partners) hiding inside a 
given number. For example, children can take apart five to see that it can 
be made from a three and two and also from four and one. Later on these 
decomposed/composed triads can be symbolized by equations, such as 5 = 
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3 + 2 and 5 = 4 + 1, giving children experiences with the meaning of the 
= symbol as is the same number as and with algebraic equations with one 
number on the left. Initially children shift from seeing the total and then 
seeing the partners (addends), but with experience and fluency, they can 
simultaneously see the addend within the total. This is called embedded 
numbers: The two addends are embedded within the total. Such embedded 
numbers, along with the number word sequence skill of starting counting 
at any number, allow children to move to the second level of addition/sub-
traction solution procedures, counting on. Initially composed/decomposed 
number triads and even embedded number triads are constructed with small 
numbers using conceptual subitizing, but eventually counting is used with 
larger numbers to construct larger triads.

Many children from low-income backgrounds cannot initially solve such 
oral numerical problems, even with very small numbers (see Chapter 4). 
They need opportunities to learn and practice the Level 1 solution methods 
with objects and with fingers and experience composing/decomposing num-
bers to be able to see the addends (partners) hiding inside the small numbers 
3, 4, 5. Such alternating focusing on the total and then on the partners 
(addends) will enable them to answer such oral numerical problems and 
also begin the learning path toward embedded numbers that is vital for the 
Level 2 addition/subtraction solution methods.

Step 3 (Kindergarten)

At this step, children extend cardinal counting and use math draw-
ings as well as objects to solve situation, word, oral number word, written 
numeral, and which-is-more/less problems with totals ≤ 10 (see Box 5-10). 
Written work, including worksheets, is appropriate in kindergarten if it 
follows up on activities with objects or presents supportive visualizations. 
Children at these ages need practice that builds fluency after related expe-
riences with objects to build mathematical understanding, and they need 
experience relating symbols for quantities to actual or drawn quantities.

Kindergarten children can extend their addition and subtraction prob-
lem solving to all problems with totals ≤ 10. Close to half of these prob-
lems have one addend of six or more. For these problems, knowing the 
5-patterns using fingers for 6 through 10 can be helpful (5 + 1 = 6, 5 + 2 
= 7, etc., to 5 + 5 = 10). All children can begin to make math drawings 
themselves, even for these larger numbers. This allows them to reflect on 
and discuss their solution methods. Math drawings involving circles or 
other simple shapes also enable more advanced children to explore prob-
lems with totals greater than ten. It is difficult to solve such problems with 
fingers until one advances to the general counting on solution methods (see 
Box 5-11, Level 2), which typically does not occur until Grade 1. Children 
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can discuss general patterns they see in addition and subtraction, such 
as +1 is just the next counting number or −1 is the number just before. 
Children can discuss adding and subtracting 0 and the pattern it gives: 
adding or subtracting 0 does not change the original number, so the result 
(the answer) is the same as the original number. Many children can now 
informally use the commutative property (A + B = B + A) especially when 
one number is small (e.g., Baroody and Gannon, 1985; Carpenter et al., 
1993; DeCorte and Verschaffel, 1985; for a review of the literature, see 
Baroody, Wilkins, and Tiilikainen, 2003). Experience with put together ad-
dition situations in which the addends do not have different roles provides 
better support for learning the commutative property than does experience 
with the change situation (see research described in Clements and Sarama, 
2007, 2008; Fuson, 1992a, 1992b) because these addends have such dif-
ferent roles in the action. To the child, it actually feels different to have 1 
and then get 8 more than to have 8 and get 1 more. It feels better to gain 
8 instead of gaining 1, even though you end up with the same amount. In 
contrast, the numerical work on put together/take apart partners facilitates 
understanding that the order in which one adds does not matter. Looking at 
composed/decomposed triads with the same addends also enables children 
to see and understand commutativity in these examples (for example, see 
that 9 = 1 + 8 and 9 = 8 + 1 and that the addends are just switched in order 
but still total the same).

All of the work on the relations/operation core in kindergarten serves 
a double purpose. It helps children solve larger problems and become more 
fluent in their Level 1 direct modeling solution methods. It also helps them 
reach fluency with the number word list in addition and subtraction situa-
tions, so that the number word list can become a representational tool for 
use in the counting on solution methods.

Different children learn and remember some sums and differences at 
each level, and it is very useful to know these for small numbers, for ex-
ample for totals ≤ 8. But the more important step at the kindergarten level 
is that children are learning general numerical solution methods that they 
can extend to larger numbers. Simultaneously they are becoming fluent with 
these processes and with the number word list, so that they can advance to 
the Level 2 counting on methods that are needed to solve single-digit sums 
and differences with totals over ten. Children later in the year can begin to 
practice the number word list prerequisite for counting on by starting to 
count at a given number instead of always at one.

Kindergarten children are also working on all of the prerequisites for 
the Level 3 derived fact methods, such as make-a-ten (see Box 5-11). One 
prerequisite, seeing the tens in teen numbers, was discussed in the number 
core. The other two prerequisites involve knowing partners of numbers 
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(decomposed/composed numerical triads) to permit flexible breaking apart 
and combining of numbers to turn them into teen addition or subtraction 
problems. For example, all of the following addition problems—9 + 2, 9 + 
3, 9 + 4, . . . , 9 + 9—require the same first step: 9 needs 1 more to make 
ten, so separate the second number into 1 + ?. This triad then becomes 9 
+ 1 + ? = 10 + ?, which is an easier problem to solve if you know the tens 
in teen numbers. However, each problem requires a different second step: 
decomposing the second number to identify the rest of the second addend 
that will be added to ten (prerequisite 3 for derived facts methods in Box 
5-11). For example, 9 + 4 = 9 + 1 + 3 = 10 + 3 = 13, but 9 + 6 = 9 + 1 + 5 
= 10 + 5 = 15. So kindergarten children need experiences with finding and 
learning the partners of various numbers under 10.

Children’s counting and matching knowledge is now sufficient to ex-
tend to relations on sets up through 10 and to more abstract ways of 
presenting such relational situations as two rows of drawings that can be 
matched by drawing lines connecting them. As discussed above for Step 
2, children will be more accurate when these objects are already matched 
instead of being visually misleading (for example, the longer row has less). 
They therefore can start with the simpler nonmisleading situations and 
extend to the visually misleading situations when they have mastered such 
matched situations. Again, differentiating length and number meanings 
of more will be helpful (which looks like more and which really is more). 
Children who have not had sufficient experiences matching objects at Step 2 
will need such experiences to support the more advanced activities in which 
matching is done by drawing lines.

Working with the terms more and less can also be an opportunity to 
discuss and emphasize that length units used in measuring a length must 
touch each other and cover the whole length from beginning to end to get 
an accurate length measurement. But things children are counting can be 
spread apart or moved around and they will still have the same number of 
things. Comparing objects spaced evenly in two rows can also be related 
to picture graphs, which record numbers of different kinds of data as a 
row of the same pictures (see the Chapter 2 discussion in the Mathemati-
cal Connections section). Activities in which children compare two rows of 
drawings by counting or matching them can be considered as using picture 
graphs if each drawing in one row is the same. What is important about 
such activities is that children talk about them using comparison language 
(There are more suns than clouds or There are fewer clouds than suns) and 
describe how they found their answer.

Children at this level can also prepare for the comparison problems at 
Grade 1 by beginning to equalize two related sets. For example, for a row 
of 5 above a row of 7, they can be asked to add more to the row of 5 to 
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make it equal to the row of 7 and write their addition 5 + 2. This 2 is the 
difference between 5 and 7, it is the amount extra 7 has, so such exercises 
help children begin to see this third quantity in the comparison situation.

Writing Equations

There is not sufficient evidence to indicate the best time for teachers to 
start writing addition and subtraction problems in equations or for students 
to do so. The equation form can be confusing to some students even in 
Grade 1, and students may confuse the symbols + = and −. This confusion 
and limited meanings for the = sign often continue for many years and are 
of concern for the later learning of algebra. Because the fundamental aspect 
of an equation is that the sides are equal to each other, it is important for 
children to learn to conceptually chunk each side. Thus, some children may 
need extensive experience just with expressions, such as 3 + 2 or 7 − 5, 
before these are used in equations. These forms might be introduced before 
the full equation is introduced, perhaps even with 4-year-olds. It may also 
help for the teacher to circle or underline these expressions to indicate that 
this group of symbols is a chunk that represents a single number. Future 
research directed at such issues of when and how to write such pre-equation 
forms would be helpful.

The other issue with equations is the form of the equation to write. 
As mentioned earlier, it is important for later algebraic understanding of 
acceptable forms of equations for children to see equations with only one 
number on the left, such as 6 = 4 + 2 to show that 6 breaks apart to make 
4 and 2. This equation form can be written for take apart situations in 
which the total is being separated into two parts, for example, Grammy 
has 6 flowers. She put four flowers in one �ase and two flowers in the other 
�ase. Children can show this situation with objects or fingers (Count out 6 
objects and then separate them into � and 2) or make a math drawing of it 
while the teacher records the situation in an equation. This form can also 
be used in practice activities with objects in which children find all of the 
partners (addends) of a given number. For example, children can make 5 
using two different colors of objects, and each color can show the partners. 
The teacher can record all of the partners that children find: 5 = 1 + 4, 5 = 
2 + 3, 5 = 3 + 2, 5 = 4 + 1. This can be in a situation (Let’s find all of the 
ways that Grammy can put her 5 flowers in her 2 �ases) or just an activity 
with numbers (Let’s find all of the partners of 5).

Change plus and change minus situations can be recorded by equations 
with only one number on the right because that is the action in these situa-
tions (see Box 2-4), for example, 3 + 1 = 4 or 5 − 2 = 3. In these equations 
the = sign is really more like an arrow, meaning gi�es or results in. As dis-
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cussed, this is often the only meaning of = that students in the United States 
know, and this interferes with their use of algebra. So it is really important 
that they also see and use forms like 5 = 3 + 2 to show the numbers hiding 
inside a number, the partners (addends) that make that number.

Step 4 (Grade 1)

At this step, children build on their earlier number and relations/
operation knowledge and skills to advance to Level 2 counting on solu-
tion methods. They also come to understand that addition is related to 
subtraction and can think of subtraction as finding an unknown addend 
(see Box 5-10).

Grade 1 addition and subtraction is the culmination of all of the num-
ber core and relations/operation core experiences and expertise that have 
been building since birth, for those who have been given sufficient opportu-
nities to build such competence. Foundational and achievable relations and 
operations content for Grade 1 children is summarized in Box 5-9.

For all of the earlier experiences to come together into the Level 2 
counting on solution methods, some children may still need some targeted 
practice in beginning counting at any number instead of always starting at 
one (one of the prerequisites for counting on). It is also helpful to begin 
counting on in some kind of structured visual setting, so that children can 
conceptualize the relationships between the counting and cardinal meanings 
of number words.

Counting on is not a rote method. It requires a shift in word meaning 
for the first addend from its cardinal meaning of the number in that first 
addend to a counting meaning, as children count on from that first addend 
to the total. Children then must shift from that last counted word to its car-
dinal meaning of how many objects there are in total. For example, seeing 
circles for both addends in a row with the problem printed above enables 
children to count both addends and then count all to find the total (their 
usual Level 1 direct modeling solution method). But after several times of 
counting all, they can be asked what number they say when they count the 
last circle in the group of 6 and whether they need to count all of the objects 
or could they just start at 6. Going back and forth between this counting on 
and the usual counting all enables children to see that counting on is just an 
abbreviation of counting all, in which the initial counts are omitted (e.g., 
Fuson, 1982; Fuson and Secada, 1986; Secada, Fuson, and Hall, 1983).

 6 + 3  Six is a cardinal number.
 o o o o o o o o o
 1 2 3 4 5 6 7 8 9  Six here is a count number when counting all.
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 siiiixxx 7 8 9  To count on like this, a child must shift from the 
cardinal meaning above to the count meaning of 
six and then keep counting 7, 8, 9.

Trying this with different problems enables many children to see this 
general pattern and begin counting on. Transition strategies, such as count-
ing 1, 2, 3, 4, 5, 6 very quickly or very softly or holding the 6 (siiiiiiixxxxxx), 
have been observed in students who are learning counting on by themselves; 
these can be very useful in facilitating this transition to counting on (e.g., 
Fuson, 1982; Fuson and Secada, 1986; Secada, Fuson, and Hall, 1983). 
Some weaker students may need explicit encouragement to trust the six 
and to let go of the initial counting of the first addend, and they may need 
to use these transitional methods for a while.

Counting on has two parts, one for each addend. The truncation of the 
final counting all by starting with the cardinal number of the first addend 
was discussed above. Counting on also requires keeping track of the second 
addend—of how many you count on so that you count on from the first ad-
dend exactly the number of the second addend. When the number is small, 
such as for 6 + 3, most children use perceptual subitizing to keep track of 
the 3 counted on. This keeping track might be visual and involve actual 
objects, fingers, or drawn circles. But it can also use a mental visual image 
(some children say they see 3 things in their head and count them). Some 
children use auditory subitizing (they say they hear 7, 8, 9 as three words). 
For larger second addends, children use objects, fingers, or conceptual subi-
tizing to keep track as they count on. For 8 + 6, they might think of 6 as 
3 and 3 and count with groups of three: 8 9 10 11 12 13 14 with a pause 
after the 9 10 11 to mark the first three words counted on. Other children 
might use a visual (I saw � circles and another � circles) or an auditory 
rhythm to keep track of how many words they counted on. So here we see 
how the perceptual subitizing and the conceptual subitizing, which begin 
very early, come to be used in a more complex and advanced mathematical 
process. This is how numerical ideas build, integrating the levels of thinking 
visually/holistically and thinking about parts into a complex new concep-
tual structure that relates the parts and the whole. Children can discuss the 
various methods of keeping track, and they can be helped to use one that 
will work for them. Almost all children can learn to use fingers successfully 
to keep track of the second addend.

Many experiences with composing/decomposing (finding partners hid-
ing inside a number) can give children the understanding that a total is any 
number that has partners (addends) that compose it. When subtracting, 
they have been seeing that they take away one of those addends, leav-
ing the other one. These combine into the understanding that subtracting 
means finding the unknown addend. Therefore, children can always solve 
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subtraction problems by a forward method that finds the unknown addend, 
thus avoiding the difficult and error-prone counting down methods (e.g., 
Baroody, 1984; Fuson, 1984, 1986b). So 14 − 8 = ? can be solved as 8 + ? 
= 14, and students can just count on from 8 up to 14 to find that 8 plus 6 
more is 14.

Some first graders will also move on to Level 3 derived fact solution 
methods (see Box 5-11) such as doubles plus or minus one and the gen-
eral method that works for all teen totals: the make-a-ten methods taught 
in East Asia (see Chapter 4 and, e.g., Geary et al., 1993; Murata, 2004). 
These make-a-ten methods are particularly useful in multidigit addition 
and subtraction, in which one decomposes a teen number into a ten to give 
to the next column while the leftover ones remain in their column. More 
children will be able to learn make-a-ten methods if they have learned the 
prerequisites for them in kindergarten or even in Grade 1.

The comparison situations compare a large quantity to a smaller quan-
tity to find the difference. These are complex situations that are usually not 
solvable until Grade 1. The third quantity, the difference, is not physically 
present in the situation, and children must come to see the differences as 
the extra leftovers in the bigger quantity or the amount the smaller quantity 
needs to gain in order to be the same as the bigger quantity. The language 
involved in comparison situations is challenging, because English gives two 
kinds of information in the same sentence. Consider, for example, the sen-
tence Emily has fi�e more than Tommy. This says both that Emily has more 
than Tommy and that she has five more. Many children do not initially hear 
the five. They will need help and practice identifying and using the two 
kinds of information in this kind of sentence (see the research reviewed in 
Clements and Sarama, 2007, 2008; Fuson, 1992a, 1992b; Fuson, Carroll, 
and Landis, 1996).

Learning to mathematize and model addition and subtraction situa-
tions with objects, fingers, and drawings is the foundation for algebraic 
problem solving. More difficult versions of the problem situations can be 
given from Grade 1 on. For example, the start or change number can be the 
unknown in change plus problems: Joey drew 5 houses and then he drew 
some more. Now he has � houses. How many more houses did he draw? 
Children naturally model the situation and then reflect on their model 
(with objects, fingers, or a drawing) to solve it (see research summarized in 
 Clements and Sarama, 2007; Fuson, 1992a, 1992b). From Grade 2 on they 
can also learn to represent the situation with a situation equation (e.g., 5 + 
? = 9 as in the example above, or ? + 4 for an unknown start number) and 
then reflect on that to solve it. This process of mathematizing (including 
representing the situation) and then solving the situation representation is 
algebraic problem solving.
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Issues in Learning Relations and Operations

The Extensi�e Learning Path for Addition and Subtraction

The teaching-learning path we describe shows that even the most ad-
vanced solution strategies for adding and subtracting single-digit numbers 
have their roots before age 2 and may not culminate until Grade 1 or even 
Grade 2. The paths also illustrate how children coordinate several differ-
ent complex kinds of understandings and skills beginning with perceptual 
subitizing through conceptual subitizing and then counting and matching 
to employ more sophisticated problem-solving strategies. This makes it 
clear that one cannot characterize the learning of single-digit addition and 
subtraction as simply “memorizing the facts” or “recalling the facts,” as if 
children had been looking at an addition table of numbers and memoriz-
ing these. Children do remember particular additions and subtractions as 
early as age 2, but each of these has some history as perceptually or con-
ceptually subitized situations, counted situations over many examples, or 
additions/subtractions derived from other known additions/subtractions. It 
is therefore much more appropriate to set learning goals that use the ter-
minology fluency with single-digit additions and their related subtractions 
rather than the terms recalled or memorized facts. The latter terms imply 
simplistic rote teaching/learning methods that are far from what is needed 
for deep and flexible learning.

The Mental Number Word List as a Representational Tool

We have demonstrated how children come to use the number word 
list (the number word sequence) as a mental tool for solving addition and 
subtraction problems. They are able to use increasingly abbreviated and 
abstract solution methods, such as counting on and the make-a-ten meth-
ods. The number words themselves have become unitized mental objects 
to be added, subtracted, and ordered as their originally separate sequence, 
counting, and cardinal meanings become related and finally integrated 
over several years into a truly numerical mental number word sequence. 
Each number can be seen as embedded within each successive number and 
as seriated: related to the numbers before and after it by a linear ordering 
created by the order relation less than applied to each pair of numbers 
(see Box 5-12). This is what Piaget (1941/1965) called truly operational 
cardinal number: Any number in the sequence displays both class inclusion 
(the embeddedness) and seriation (see also Kamii, 1985). But this fully 
Piagetian integrated sequence will not be finished for most children until 
Grade 1 or Grade 2, when they can do at least some of the Step 3 derived 
fact solution methods, which depend on the whole teaching-learning path 
we have discussed.
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Many researchers have noted how the number word list turns into a 
mental representational tool for adding and subtracting. A few researchers 
have called this a mental number line. However, for young children this is 
a misnomer, because children in kindergarten and Grade 1 are using the 
number word list (sequence) as a count model: Each number word is taken 
as a unit to be counted, matched, added, or subtracted. In contrast, a num-
ber line is a length model, like a ruler or a bar graph, in which numbers 
are represented by the length from zero along a line segmented into equal 
lengths. Young children have difficulties with the number line representa-
tion because they have difficulty seeing the units—they need to see things, 
so they focus on the numbers instead of on the lengths. So they may count 
the starting point 0 and then be off by one, or they focus on the spaces 
and are confused by the location of the numbers at the end of the spaces. 
The report Adding It Up: Helping Children Learn Mathematics (National 

BOX 5-12 
Ordering and Ordinal Numbers

	 There	is	frequent	confusion	in	the	research	literature	in	the	use	of	the	terms	
ordered	or	ordering,	ordinal number,	and	order relation.	Some	of	this	confusion	
stems	from	the	fact	that	adults	can	flexibly	and	fluently	use	the	counting,	cardinal,	
and	ordinal	meaning	of	number	words	without	needing	to	consciously	think	about	
the	different	meanings.	As	a	result,	they	may	not	be	able	to	differentiate	the	mean-
ings	very	clearly.	But	young	children	learn	the	meanings	separately	and	need	to	
connect	them.
	 When	counting	to	find	the	total	number	in	a	set,	the	order	for	connecting	each	
number	 word	 to	 objects	 is	 arbitrary	 and	 could	 be	 done	 in	 any	 order.	 As	 noted	
previously,	 the	 last	number	 takes	on	a	cardinal	meaning	and	 refers	 to	 the	 total	
numbers	of	 items	counted.	Thus,	 the	cardinal	meaning	of	a	number	 refers	 to	a	
set	with	that	many	objects.	Cardinal	numbers	can	be	used	to	create	an	order	rela-
tion.	That	is	the	idea	that	one	set	has	more	members	than	another	set.	An	order	
relation	(one	number	or	set	is	less	than	or	more	than	another	number	or	set)	tells	
how	two	quantities	are	related.	This	order	relation	produces	a	linear	ordering	on	
these	numbers	or	sets.	An	ordinal	number	tells	where	in	the	ordering	a	particular	
number	or	set	falls.	A	child	can	subitize	for	the	small	ordinal	numbers	(see	whether	
an	object	in	an	ordered	set	is	first,	second,	or	third),	but	needs	to	count	for	larger	
ordinal	numbers	and	shift	from	a	count	meaning	to	an	ordinal	meaning	(e.g.,	count	
one, two, three, four, five, six, seven	 [count	 meaning].	 That person is seventh	
[ordinal	meaning	and	ordinal	work] in the line to buy tickets.).
	 We	have	not	emphasized	ordinal	words	 in	this	chapter	because	they	are	so	
much	more	difficult	than	are	cardinal	words,	and	children	learn	them	much	later	
(e.g.,	Fuson,	1988).	Although	4-	and	5-year-olds	could	 learn	 to	use	 the	ordinal	
words	first,	second,	and	 last,	 it	 is	not	crucial	that	they	do	so.	The	ordinal	words	
first	through	tenth	could	wait	until	Grade	1.
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Research Council, 2001a) recognized the difficulties of the number line 
representation for young children and recommended that its use begin at 
Grade 2 and not earlier.

The number line is particularly important when one wants to show 
parts of one whole, such as one-half. In early childhood materials, the term 
number line or mental number line often really means a number path, such 
as in the common early childhood games in which numbers are put on 
squares and children move along a numbered path. Such number paths are 
count models—each square is an object that can be counted—so these are 
appropriate for children from age 2 through Grade 1. Some research sum-
marized in Chapter 3 did focus on children’s and adult’s use of the analog 
magnitude system to estimate large quantities or to say where specified 
larger numbers fell along a number line. Again, it is not clear, especially for 
children, whether they are using a mental number list or a number line; the 
crucial research issue is the change in the spacing of the numbers with age, 
and this could come either from children’s use of a mental number list or 
a number line. The use of number lines, such as in a ruler or a bar graph 
scale, is an important part of measurement and is discussed in Chapter 6. 
But for numbers, relations, and operations, physical and mental number 
word lists are the appropriate model.

Variability in Children’s Solution Methods

The focus of this chapter is on how children follow a learning path 
from age 2 to Grade 1 in learning important aspects of numbers, relations, 
and operations. We continually emphasize that there is variability within 
each age group in the numbers and concepts with which a given child can 
work. As summarized in Chapter 3, much of this variability stems from 
differences in opportunities to learn and to practice these competencies, and 
we stress how important it is to provide such opportunities to learn for all 
children. We close with a reminder that there is also variability within a 
given individual at a given time in the strategies the child will use for a given 
kind of task. Researchers through the years have shown that children’s 
strategy use is marked by variability both within and across children (e.g., 
Siegler, 1988; Siegler and Jenkins, 1989; Siegler and Shrager, 1984). Even on 
the same problem, a child might use one strategy at one point in the session, 
and another strategy at another point. As children gain proficiency, they 
gradually move to more mature and efficient strategies, rather than doing 
so all at once. The variability itself is thought to be an important engine 
of cognitive change. Similarly, as discussed above, accuracy can vary with 
effort, particularly with counting. The variability in the use of strategies 
within or across children can provide important opportunities to discuss 
different methods and extend understandings of all participants. The vari-
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ability in results with different levels of effort can lead to discussions about 
how learning mathematics depends on effort and practice and that everyone 
can get better at it if they practice and try hard. Effort creates competen-
cies that are the building blocks for the next steps in the learning path for 
numbers, relations, and operations.

SUMMARY

The teaching-learning path described in this chapter shows how young 
children learn, integrate, and extend their knowledge about cardinality, the 
number word list, 1-to-1 counting correspondences, and written number 
symbols in successive steps from age 2 to 7. Much of this knowledge re-
quires specific cultural knowledge—for example, the number word list in 
English, counting, matching, vocabulary about relations and operations. 
Children require extensive, repeated experiences with small numbers and 
then similar experiences with larger and larger numbers. Counting must 
become very fluent, so that it can become a mental representational tool for 
problem solving. As we have shown, even young children can have experi-
ences in the teaching-learning path that support later algebraic learning. 
To move through the steps in the teaching-learning path, children require 
teaching and interaction in the context of explicit, real-world problems 
with feedback and opportunities for reflection provided. They also require 
accessible situations in which they can practice (consolidate), deepen, and 
extend their learning and their own.
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6

The Teaching-Learning Paths 
for Geometry, Spatial Thinking, 

and Measurement

Geometry, spatial thinking, and measurement make up the second area 
of mathematics we emphasize for young children. In this chapter we pro-
vide an overview of children’s development in these domains, lay out the 
teaching-learning paths for children ages 2 through kindergarten in each 
broad area, and discuss instruction to support their progress through these 
teaching-learning paths. As in Chapter 5, the discussion of instruction is 
closely tied to the specific mathematical concepts covered in the chapter. 
Chapter 7 provides a more general overview of effective instruction.

GEOMETRY AND SPATIAL THINKING

The Dutch mathematician Hans Freudenthal stated that geometry and 
spatial thinking are important because “Geometry is grasping space. And 
since it is about the education of children, it is grasping that space in which 
the child lives, breathes, and moves. The space that the child must learn to 
know, explore, and conquer, in order to live, breath and move better in it. 
Are we so accustomed to this space that we cannot imagine how important 
it is for us and for those we are educating?” (Freudenthal, 1973, p. 403). 
This section describes the two major ways children understand that space, 
starting with smaller scale perspectives on geometric shape, including com-
position and transformation of shapes, and then turning to larger spaces in 
which they live. Although the research on these topics is far less developed 
than in number, it does provide guidelines for developing young children’s 
learning of both geometric and spatial abilities.
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Shape

Shape is a fundamental idea in mathematics and in development. Be-
yond mathematics, shape is the basic way children learn names of objects, 
and attending to the objects’ shapes facilitates that learning (Jones and 
Smith, 2002).

Steps in Thinking About Shape

Children tend to move through different levels in thinking as they learn 
about geometric shapes (Clements and Battista, 1992; van Hiele, 1986). 
They have an innate, implicit ability to recognize and match shapes. But 
at the earliest, prerecognition level, they are not explicitly able to reliably 
distinguish circles, triangles, and squares from other shapes. Children at this 
level are just starting to form unconscious visual schemes for the shapes, 
drawing on some basic competencies. An example is pattern matching 
through some type of feature analysis (Anderson, 2000; Gibson et al., 
1962) that is conducted after the visual image of the shape is analyzed by 
the visual system (Palmer, 1989).

At the next level, children think visually or holistically about shapes 
(i.e., syncretic thought, a fusion of differing systems; see Clements, Battista, 
and Sarama, 2001; Clements and Sarama, 2007b) and have formed schemes, 
or mental patterns, for shape categories. When first built, such schemes are 
holistic, unanalyzed, and visual. At this visual/holistic step, children can 
recognize shapes as wholes but may have difficulty forming separate men-
tal images that are not supported by perceptual input. A given figure is a 
rectangle, for example, because “it looks like a door.” They do not think 
about shapes in terms of their attributes, or properties. Children at this 
level of geometric thinking can construct shapes from parts, but they have 
difficulty integrating those parts into a coherent whole.

Next, children learn to describe, then analyze, geometric figures. The 
culmination of learning at this descriptive/analytic level is the ability to rec-
ognize and characterize shapes by their properties. Initially, they learn about 
the parts of shapes—for example, the boundaries of two-dimensional (2-D) 
and three-dimensional (3-D) shapes—and how to combine them to create 
geometric shapes (initially imprecisely). For example, they may explicitly 
understand that a closed shape with three straight sides is a triangle. In the 
teaching-learning path articulated in Table 6-1, this is called the “thinking 
about parts” level.

Children then increasingly see relationships between parts of shapes, 
which are properties of the shapes. For instance, a student might think of a 
parallelogram as a figure that has two pairs of parallel sides and two pairs 
of equal angles (angle measure is itself a relation between two sides, and 
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TABLE 6-1 Space and Shapes in Two Dimensions

Steps/Ages
(Level of 
Thinking)

Goals

A. Perceive, Say, 
Describe/Discuss, 
and Construct 
Objects in 2-D 
Space

B. Perceive, Say, Describe/
Discuss, and Construct Spatial 
Relations in 2-D Space

C. Perceive, Say, 
Describe/Discuss, 
and Construct 
Compositions and 
Decompositions in 
2-D Space

Step 1 (Ages 2 and 3)

Thinking 
visually/
holistically

Recognition and 
informal description 
(including at least 
circles, squares, 
then triangles, 
rectangles).

Recognize shapes in many 
different orientations and sizes.
Trial-and-error geometric 
movements (informal, not 
quantified).
•  Use relational language, 

including vertical 
directionality terms as “up” 
and “down,” referring to a 
2-D environment.

•  Informally recognizes area as 
filling 2-D space (e.g., “I need 
more papers to cover this 
table”).

Solve simple puzzles 
involving things in 
the world.
Create pictures by 
representing single 
objects, each with a 
different shape.

Thinking 
about 
parts

Shapes by number 
of sides (starting 
with restricted cases, 
e.g., prototypical 
equilateral triangle, 
square).

Step 2 (Age 4)

Thinking 
visually/
holistically

Recognition and 
informal description 
at multiple 
orientations, 
sizes, and shapes 
(includes circles 
and half/quarter 
circles, squares 
and rectangles, 
triangles, and 
others [the pattern 
block rhombus, 
trapezoids, hexagons 
regular]).

Recognize shapes (to the left) 
in many different orientations, 
sizes, and shapes (e.g., “long” 
and “skinny” rectangles and 
triangles).
•  Match shapes by using 

geometric motions to 
superimpose them.

•  Use relational words 
of proximity, such as 
“beside,” “next to,” and 
“between,” referring to a 2-D 
environment.

continued
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TABLE 6-1 Continued

Steps/Ages
(Level of 
Thinking)

Goals

A. Perceive, Say, 
Describe/Discuss, 
and Construct 
Objects in 2-D 
Space

B. Perceive, Say, Describe/
Discuss, and Construct Spatial 
Relations in 2-D Space

C. Perceive, Say, 
Describe/Discuss, 
and Construct 
Compositions and 
Decompositions in 
2-D Space

Thinking 
about 
parts

Describe and name 
shapes by number 
of sides (up to the 
number they can 
count).
Describe and name 
shapes by number of 
corners (vertices).

Move shapes using slides, flips, 
and turns.
•  Use relational language 

involving frames of reference, 
such as “to this side of,” 
“above.”

•  Compare areas by 
superimposition.

For rectangular spaces
•  Tile a rectangular space with 

physical tiles (squares, right 
triangles, and rectangles with 
unit lengths) and guidance.

Move shapes using 
slides, flips, and turns 
to combine shapes to 
build pictures.
For rectangular 
spaces
•  Copy a design 

shown on a grid, 
placing squares 
onto squared-grid 
paper.

Relating 
parts and 
wholes

Sides of same/
different length.
•  Right vs. nonright 

angles.

Predict effects of rigid geometric 
motions.

Combine shapes 
with intentionality, 
recognizing them as 
new shapes.
•  In an “equilateral 

triangle world,” 
create pattern block 
blue rhombus, 
trapezoid, and 
hexagons from 
triangles.

Step 3 (Age 5)

Thinking 
visually/
holistically

Recognition and 
informal description, 
varying orientation, 
sizes, shapes 
(includes all above, 
as well as octagons, 
parallelograms, 
convex/concave 
figures).
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TABLE 6-1 Continued

Steps/Ages
(Level of 
Thinking)

Goals

A. Perceive, Say, 
Describe/Discuss, 
and Construct 
Objects in 2-D 
Space

B. Perceive, Say, Describe/
Discuss, and Construct Spatial 
Relations in 2-D Space

C. Perceive, Say, 
Describe/Discuss, 
and Construct 
Compositions and 
Decompositions in 
2-D Space

Thinking 
about 
parts

Shape by number 
of sides and corners 
(including new 
shapes).

Create and record original 
compositions made using 
squares, right triangles, and 
rectangles on grid paper. Extend 
to equilateral grids and pattern 
blocks (those with multiples of 
60° and 120° angles).
•  Begin to use relational 

language of “right” and 
“left.”

•  Draw a complete covering 
of a rectangle area. Count 
squares in rectangular arrays 
correctly and (increasingly) 
systematically.

Relating 
parts and 
wholes

Measure of sides 
(simple units), gross 
comparison of angle 
sizes.

Compare area using 
superimposition.
•  For rectangular regions, draw 

and count by rows (initially 
may only count some rows as 
rows).

•  Identify and create symmetric 
figures using motions (e.g., 
paper folding; also mirrors as 
reflections).

Composition on grids 
and in puzzles with 
systematicity and 
anticipation, using 
a variety of shape 
sets (e.g., pattern 
blocks; rectangular 
grids with squares, 
right triangles, and 
rectangles; tangrams).

NOTE: Most of the time should be spent on 2-D, about 85 percent (there are many beneficial 
overlapping activities).

equality of angles another relation). Owing usually to a lack of good expe-
riences, many students do not reach this level until late in their schooling. 
However, with appropriate learning experiences, even preschoolers can be-
gin to develop this level of thinking. In Table 6-1 this is called the “relating 
parts and wholes” level.

De�elopment of Shape Concepts

What ideas do preschool children form about common shapes? De-
cades ago, Fuson and Murray (1978) reported that, by 3 years of age, over 
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60 percent of children could name a circle, a square, and a triangle. More 
recently, Klein, Starkey, and Wakeley (1999) reported the shape-naming ac-
curacy of 5-year-olds as circle, 85 percent; square, 78 percent; triangle, 80 
percent; rectangle, 44 percent. In one study (Clements et al., 1999), children 
identified circles quite accurately (92, 96, and 99 percent for 4-year-olds, 
5-year-olds, and 6-year-olds, respectively), and squares fairly well (82, 86, 
and 91 percent). Young children were less accurate at recognizing triangles 
and rectangles, although their averages (e.g., 60 percent for triangles for all 
ages 4-6) were not remarkably smaller than those of elementary students 
(64-81 percent). Their visual prototype for a triangle seems to be of an 
isosceles triangle. Their average for rectangles was a bit lower (just above 
50 percent for all ages). Children’s prototypical image of a rectangle seems 
to be a four-sided figure with two long parallel sides and “close to” square 
corners. Thus, young children tended to accept long parallelograms or right 
trapezoids as rectangles.

In a second study (Hannibal and Clements, 2008), children ages 3 to 
6 sorted a variety of manipulable forms. Certain mathematically irrelevant 
characteristics affected children’s categorizations: skewness, aspect ratio, 
and, for certain situations, orientation. With these manipulatives, orienta-
tion had the least effect. Most children accepted triangles even if their base 
was not horizontal, although a few protested. Skewness, or lack of sym-
metry, was more important. Many rejected triangles because “the point on 
top is not in the middle.” For rectangles, many children accepted nonright 
parallelograms and right trapezoids. Also important was aspect ratio, the 
ratio of height to base. Children preferred an aspect ratio near one for 
triangles; that is, about the same height as width. Children rejected both 
triangles and rectangles that were “too skinny” or “not wide enough.”

Spatial Structure and Spatial Thinking

Spatial thinking includes two main abilities: spatial orientation and 
spatial visualization and imagery. Other important competencies include 
knowing how to represent spatial ideas and how and when to apply such 
abilities in solving problems.

Spatial Orientation

Spatial orientation involves knowing where one is and how to get 
around in the world. As shown in Chapter 3, spatial orientation is, like 
number, a core cognitive domain, for which competencies, including the 
ability to actively and selectively seek out information, are present from 
birth (Gelman and Williams, 1997). Children have cognitive systems that 
are based on their own position and their movements through space, and 
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external references. They can learn to represent spatial relations and move-
ment through space using both of these systems, eventually mathematizing 
their knowledge.

Children as young as age 2 can implicitly use knowledge of multiple 
landmarks and distances between them to determine or remember loca-
tions. By about age 5, they can explicitly represent that information, even 
interpreting or creating simple models of spaces, such as their classroom. 
Similarly, they can implicitly use distance and direction when they move 
at age 1-2. They do so more reliably when they move themselves, another 
justification for providing children of all ages with opportunities to explore 
large spaces in which they can navigate safely. By age 4, children explicitly 
use distance and direction and reason about their locations. For example, 
they can point to one location from another, even though they never walked 
a path that connected the two (Uttal and Wellman, 1989).

Language for spatial relationships is acquired in a consistent order, even 
across different languages (Bowerman, 1996). The first terms acquired are 
in, on, and under, along with such vertical directionality terms as up and 
down. These initially refer to transformations (e.g., “on” not as a smaller 
object on top of another, but only as making an object become physically 
attached to another; Gopnik and Meltzoff, 1986). Children then learn 
words of proximity, such as “beside” and “between.” Later, they learn 
words referring to frames of reference, such as “in front of,” “behind.” 
The words “left” and “right” are learned much later, and are the source of 
confusion for several years.

In these early years, children also can learn to analyze what others 
need to hear in order to follow a route through a space. Such learning is 
dependent on relevant experiences, including language. Learning and us-
ing spatial terminology can affect spatial competence (Wang and Spelke, 
2002). For example, teaching preschoolers the spatial terms “left” and 
“right” helped them reorient themselves more successfully (Shusterman and 
Spelke, 2004). However, language provides better support for simpler rep-
resentations, and more complex spatial relationships are difficult to capture 
verbally. In such cases, children benefit from learning to interpret and use 
external representations, such as models or drawings.

Young children can begin to build mental representations of their 
spatial environments and can model spatial relationships of these environ-
ments. When very young children tutor others in guided environments, 
they build geometrical concepts (Filippaki and Papamichael, 1997). Such 
environments might include interesting layouts inside and outside class-
rooms, incidental and planned experiences with landmarks and routes, 
and frequent discussion about spatial relations on all scales, including 
distinguishing parts of their bodies (Leushina, 1974/1991), describing spa-
tial movements (forward, back), finding a missing object (“under the table 
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that’s next to the door”), putting objects away, and finding the way back 
home from an excursion. As for many areas of mathematics, verbal inter-
action is important. For example, parental scaffolding of spatial commu-
nication helped both 3- and 4-year-olds perform direction-giving tasks, in 
which they had to clarify the directions (disambiguate) by using a second 
landmark (“it’s in the bag on the table”), which children are more likely to 
do the older they are. Both age groups benefited from directive prompts, but 
4-year-olds benefited more quickly than younger children from nondirective 
prompts (Plumert and Nichols-Whitehead, 1996). Children who received 
no prompts never disambiguated, showing that interaction and feedback 
from others is critical to certain spatial communication tasks.

Children as young as 3½ to 5 years of age can build simple but mean-
ingful models of spatial relationships with toys, such as houses, cars, and 
trees (Blaut and Stea, 1974), although this ability is limited until about age 
6 (Blades et al., 2004). Thus, younger children create relational, geometric 
correspondences between elements, which may still vary in scale and per-
spective (Newcombe and Huttenlocher, 2000).

As an example, children might use cutout shapes of a tree, a swing 
set, and a sandbox in the playground and lay them out on a felt board as 
a simple map. These are good beginnings, but models and maps should 
eventually move beyond overly simple iconic picture maps and challenge 
children to use geometric correspondences. Four questions arise: direction 
(which way?), distance (how far?), location (where?), and identification 
(what objects?). To answer these questions, children need to develop a 
variety of skills. They must learn to deal with mapping processes of abstrac-
tion, generalization, and symbolization. Some map symbols are icons, such 
as an airplane for an airport, but others are more abstract, such as circles 
for cities. Children might first build with objects, such as model buildings, 
then draw pictures of the objects’ arrangements, then use maps that are 
miniaturizations and those that use abstract symbols. Teachers need to con-
sistently help children connect the real-world objects to the representational 
meanings of map symbols.

As noted in Chapter 4, equity in the education of spatial thinking is an 
important issue. Preschool teachers spend more time with boys than girls 
and usually interact with boys in the block, construction, sand play, and 
climbing areas and with girls in the dramatic play area (Ebbeck, 1984). 
Boys engage in spatial activities more than girls at home, both alone and 
with caretakers (Newcombe and Sanderson, 1993). Such differences may 
interact with biology to account for early spatial skill advantages for boys 
(note that some studies find no gender differences (e.g., Brosnan, 1998, 
Chapter 15; Ehrlich, Levine, and Goldin-Meadow, 2006; Jordan et al., 
2006; Levine et al., 1999; Rosser et al., 1984).
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Spatial Visualization and Imagery

Spatial images are internally experienced, holistic representations of 
objects that are to a degree isomorphic to their referents (Kosslyn, 1983). 
Spatial visualization is understanding and performing imagined movements 
of 2-D and 3-D objects. To do this, you need to be able to create a mental 
image and manipulate it, showing the close relationship between these two 
cognitive abilities.

An image is not a “picture in the head.” It is more abstract, more 
malleable, and less crisp than a picture. It is often segmented into parts. 
Some images can cause difficulties, especially if they are too inflexible, 
vague, or filled with irrelevant details. People’s first images are static. They 
can be mentally recreated, and even examined, but not transformed. For 
example, one might attempt to think of a group of people around a table. 
In contrast, dynamic images can be transformed. For example, you might 
mentally “move” the image of one shape (such as a book) to another place 
(such as a bookcase, to see if it will fit). In mathematics, you might mentally 
move (slide) and rotate an image of one shape to compare that shape to 
another one. Piaget argued that most children cannot perform full dynamic 
motions of images until the primary grades (Piaget and Inhelder, 1967, 
1971). However, preschool children show initial transformational abilities 
(Clements et al., 1997a; Del Grande, 1986; Ehrlich et al., 2005; Levine 
et al., 1999). With guidance, 4-year-olds and some younger children can 
generate strategies for verifying congruence for some tasks, moving from 
more primitive strategies, such as edge matching (Beilin, 1984; Beilin, Klein, 
and Whitehurst, 1982) to the use of geometric transformations and super-
position. Interventions can improve the spatial skills of young children, 
especially when embedded in a story context (Casey, 2005). Computers 
are especially helpful, as the screen tools make motions more accessible to 
reflection and thus bring them to an explicit level of awareness for children 
(Clements and Sarama, 2003; Sarama et al., 1996).

Similarly, other types of imagery can be developed. Manipulative work 
with shapes, such as tangrams (a puzzle consisting of seven flat shapes, 
called tans, which are put together in different ways to form distinct geo-
metric shapes), pattern blocks, and other shape sets, provides a valuable 
foundation (Bishop, 1980). After such explorations, it is useful to engage 
children in puzzles in which they see only the outline of several pieces and 
have them find ways to fill in that outline with their own set of tangrams. 
Similarly, children can begin to develop a foundation for spatial structur-
ing by forming arrays with square tiles and cubes (this is discussed in more 
detail in the section on measurement).

Also challenging to spatial visualization and imagery are “snapshot” 
activities (Clements, 1999b; Yackel and Wheatley, 1990). Children briefly 
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see a simple arrangement of pattern blocks, then try to reproduce it. The 
configuration is shown again for a couple of seconds as many times as 
necessary. Older children can be shown a line drawing and try to draw 
it themselves (Yackel and Wheatley, 1990). This often creates interesting 
discussions revolving around “what I saw.”

Spatial visualization and imagery have been positively affected by in-
terventions that emphasize building and composing with 3-D shapes (Casey 
et al., in press). Another series of activities described above that develops 
imagery is the sequence of tactile-kinesthetic exploration of shapes.

Achievable and Foundational Geometry and Spatial Thinking

Although longitudinal research is needed, extant research provides 
guidance about which geometric and spatial experiences are appropriate 
for and achievable by young children and will contribute to their math-
ematical development. First, of the mathematics children engage in spon-
taneously in child-centered school activities, the most frequent deals with 
shape and pattern. Second, each of the recently developed, research-based 
preschool mathematics curricula includes geometric and spatial activities 
(Casey, Paugh, and Ballard, 2002; Clements and Sarama, 2004; Ginsburg, 
Greenes, and Balfanz, 2003; Klein, Starkey, and Ramirez, 2002), with 
some of these featuring such a focus in 40 percent or more of the activities. 
Third, pilot-testing has shown that these activities were achievable and 
motivating to young children (Casey, Kersh, and Young, 2004; Clements 
and Sarama, 2004; Greenes, Ginsburg, and Balfanz, 2004; Starkey, Klein, 
and Wakeley, 2004), and formal evaluations have revealed that they con-
tributed to children’s development of both numerical and spatial/geometric 
concepts (Casey and Erkut, 2005, in press; Casey et al., in press; Clements 
and Sarama, 2007c, in press; Starkey et al., 2004, 2006).

Fourth, previous work has shown that well-designed activities can effec-
tively build geometric and spatial skills and general reasoning abilities (e.g., 
Kamii, Miyakawa, and Kato, 2004). Fifth, results with curricula in Israel 
that involved only spatial and geometric activities (Eylon and Rosenfeld, 
1990) are remarkably positive. Children gained in geometric and spatial 
skills and showed pronounced benefits in the areas of arithmetic and writ-
ing readiness (Razel and Eylon, 1990). Similar results have been found in 
the United States (Swaminathan, Clements, and Schrier, 1995). Children are 
better prepared for all school tasks when they gain the thinking tools and 
representational competence of geometric and spatial sense.

In this section, we describe teaching-learning paths for spatial and 
geometric thinking in 2-D and 3-D contexts. For each area outlined below, 
children should be engaged in activities that cover a range of difficulty, in-
cluding perceive, say, describe/discuss, and construct (measurement in one, 
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two, and three dimensions is described in the following section). Tables 
6-1 and 6-2 summarize development of spatial and geometric thinking, as 
well as measurement, in two and three dimensions. Ages are grouped in the 
same was as in the previous chapter in order to illustrate how children’s 
engagement with mathematics should build and develop over the prekin-
dergarten years.

In the tables, children’s competence within each band is described on 
the basis of the level of sophistication in their thinking. These levels are 
called thinking �isually/holistically, thinking about parts, and relating parts 
and wholes.

Step 1 (Ages 2 and 3)

2-D and �-D Objects

Very young children match shapes implicitly in their play. Working at 
the visual/holistic level (see Table 6-1), they can describe pictures of objects 
of all sorts, using the shape implicitly in their recognition. By age 2 to 3, 
they also learn to name shapes, with 2-D shapes being more familiar in 
most cultures, beginning with the familiar and symmetric circle and square 
and extending to at least prototypical triangles. Although they may name 
3-D shapes by the name of one of its faces (calling a cube a square), their 
ability to match 2-D to corresponding 2-D (and similar for 3-D) indicates 
their intuitive differentiation of 2-D and 3-D shapes.

Children also learn to recognize and name additional shapes, such as 
triangles and rectangles—at least in their prototypical forms—and can be-
gin to describe them in their own words. With appropriate knowledge of 
number, they can begin to describe these shapes by the number of sides they 
have, just starting to learn the concepts and terminology of the thinking 
about parts level of geometric thinking.

Spatial Relations

From the first year of life, children develop an implicit ability to move 
objects. They also learn relationship language, such as “up” and “down” 
and similar vocabulary. They learn to apply that vocabulary in both 3-D 
contexts and in 2-D situations, such as the “bottom” of a picture that they 
are drawing on a horizontal surface.

Compositions and Decompositions

At the visual/holistic level, children can solve simple puzzles involving 
things in the world (e.g., wooden puzzles with insets for each separate ob-
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TABLE 6-2 Space and Shapes in Three Dimensions

Steps/Ages
(Levels of 
Thinking)

Goals

A. Perceive, Say, 
Describe/Discuss, and 
Construct Objects in 
3-D Space

B. Perceive, Say, 
Describe/Discuss, and 
Construct Spatial 
Relations in 3-D Space

C. Perceive, Say, Describe/
Discuss, and Construct 
Compositions and 
Decompositions in 3-D 
Space

Step 1 (Ages 2 and 3)

Thinking 
visually/
holistically

See and describe 
pictures of objects of all 
sorts (3-D to 2-D).*

Understand and use 
relational language, 
including “in,” 
“out,” “on,” “off,” 
and “under,” along 
with such vertical 
directionality terms as 
“up” and “down.

Represent real-world 
objects with blocks that 
have a similar shape.
•  Combine unit blocks by 

stacking.

Thinking 
about 
parts

Discriminate between 
2-D and 3-D shapes 
intuitively, marked by 
accurate matching or 
naming.

Step 2 (Age 4)

Thinking 
visually/
holistically

Describe the difference 
between 2-D and 3-D 
shapes, and names 
common 3-D shapes 
informally and with 
mathematical names 
(“ball”/sphere; “box” 
or rectangular prism, 
“rectangular block,” 
or “triangular block”; 
“can”/cylinder).

Match 3-D shapes.
•  Uses relational words 

of proximity, such 
as “beside,” “next 
to” and “between,” 
“above,” “below,” 
“over,” and “under.”

Thinking 
about 
parts

Identify faces of 3-D 
objects as 2-D shapes 
and name those shapes.
•  Use relational 

language involving 
frames of reference 
such as “in front 
of,” “in back of,” 
“behind,” “before.”

Identify (matches) the 
faces of 3-D shapes to 
(congruent) 2-D shapes, 
and match faces of 
congruent 2-D shapes, 
naming the 2-D shapes.
•  Represent 2-D and 

3-D relationships with 
objects.

Combine building blocks, 
using multiple spatial 
relations.
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ject pictured). They create pictures with geometric shapes (circles, circle sec-
tions, polygons), often representing single objects with different shapes, but 
eventually combining shapes to make, for example, the body of a vehicle 
or an animal. That is, initially children manipulate shapes individually, but 
they are unable to combine them to compose a larger shape. For example, 
they might use a single shape for a sun, a separate shape for a tree, and 
another separate shape for a person. Initially, they cannot accurately match 
shapes to even simple frames.

Later, children learn to place 2-D shapes contiguously to form pictures. 
In free-form “make a picture” tasks, for example, each shape used repre-

Steps/Ages
(Levels of 
Thinking)

Goals

A. Perceive, Say, 
Describe/Discuss, and 
Construct Objects in 
3-D Space

B. Perceive, Say, 
Describe/Discuss, and 
Construct Spatial 
Relations in 3-D Space

C. Perceive, Say, Describe/
Discuss, and Construct 
Compositions and 
Decompositions in 3-D 
Space

Relating 
parts and 
wholes

Informally describe why 
some blocks “stack 
well” and others do 
not.

Compose building blocks 
to produce composite 
shapes. Produce arches, 
enclosures, corners, and 
crosses systematically.

Step 3 (Age 5)

Thinking 
visually/
holistically

Name common 
3-D shapes with 
mathematical terms 
(spheres, cylinder, 
rectangle, prism, 
pyramid).

Thinking 
about 
parts

Begin to use relational 
language of “right” and 
“left.”

Fill rectangular 
containers with cubes, 
filling one layer at a 
time.

Relating 
parts and 
wholes

Describe congruent 
faces and, in context 
(e.g., block building), 
parallel faces of blocks.

Understand and can 
replicate the perspective 
of a different viewer.

Substitution of shapes. 
Build complex structures.
•  Build structures from 

pictured models.

NOTE: Less time on 3-D than on 2-D, about 10 percent of the time on 3-D.
 *Research indicates that very young children mainly use shape for object identification. 
Research says children with lower socioeconomic status have difficulty with describing objects 
and need to learn the vocabulary to do so.

TABLE 6-2 Continued
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sents a unique role or function in the picture (e.g., one shape for one leg). 
Children can fill simple frame-based shapes puzzles using trial and error, 
but they may have limited ability to use turns or flips to do so; they cannot 
use motions to see shapes from different perspectives. Thus, children view 
shapes only as wholes and see few geometric relationships between shapes 
or between parts of shapes (i.e., a property of the shape).

Composition with 3-D shapes usually begins with stacking blocks. 
Children then learn to stack congruent blocks and make horizontal “lines.” 
Next they build a vertical and horizontal structure, such as a floor or a 
simple wall. Later, some 3-year-olds begin to extend their buildings in mul-
tiple directions, possibly creating arches, enclosures, corners, and crosses, 
but often using unsystematic trial and error and simple addition of pieces.

Step 2 (Age 4)

2-D and �-D Objects

Beginning at the visual/holistic level, preschoolers learn to recognize 
a wide variety of shapes, including shapes that are different sizes and 
are presented at different orientations. They also begin to recognize that 
geometric figures can belong to the same shape class, but have different 
measures and proportions. Similarly, preschoolers learn to describe the dif-
ferences between 2-D and 3-D shapes informally. They also learn to name 
common 3-D shapes informally and with mathematical names (ball/sphere, 
box/rectangular prism, rectangular block, triangular block, can/cylinder). 
They name and describe these shapes, first using their own descriptions and 
increasingly adopting mathematical language. For example, “diamond” 
gives way to “rhombus” and “corners” become “angles” (or vertices). 
Eventually, they adopt the terminology of the thinking about parts level, 
such as identifying shapes as triangles because they have three sides. Faces 
of 3-D shapes are identified as specific 2-D shapes.

Such descriptions build geometric concepts, as well as reasoning skills 
and language. They encourage children to view shapes analytically. Chil-
dren begin to describe some shapes in terms of their properties, such as 
saying that squares have four sides of equal length, and thus make initial 
forays into thinking at the relating parts and wholes step. They informally 
describe the properties of blocks in functional contexts, such as that some 
blocks roll and others do not.

Spatial Relations

Also beginning at the visual/holistic level, preschool children learn to 
extend their vocabulary of spatial relations with such terms as “beside,” 
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“next to,” and “between,” which they can apply in 3-D and 2-D spaces. 
Later, they extend this to terms that involve frames of reference, such as 
“to the side of,” “above,” and “below.”

Later, at the thinking about parts level, preschoolers recognize “match-
ing” shapes at different orientations. They can learn to check if pairs of 2-D 
shapes are congruent by using geometry motions intuitively, moving from 
less accurate strategies, such as side-matching, or using lengths, to the use 
of superimposition (placing one shape on top of the other). They begin to 
use the geometric motions of slides, flips, and turns explicitly and intention-
ally, in discussing their solutions to puzzles or in applying such motions in 
computer environments to manipulate shapes. They learn to predict the 
effects of geometric motions, thus laying the foundation for thinking at the 
relating parts and wholes level.

Children also begin to be able to cover a rectangular space with physi-
cal tiles and represent their tilings with simple drawings, although they 
may initially leave gaps in each and may not align all the squares. This is 
mainly a competence of spatial structuring but it has close connections to 
the ability to construct compositions in 2-D space.

Preschoolers also learn about the parts of 3-D shapes, using motions to 
match the faces of 3-D shapes to 2-D shapes and representing 2-D and 3-D 
relationships with objects. For example, they may make a simple model of 
the classroom, using a rectangular block for the teacher’s desk, small cubes 
for chairs, and so forth.

Compositions and Decompositions

At the thinking about parts level, preschoolers can place shapes con-
tiguously to form pictures in which several shapes play a single role (e.g., 
a leg might be created from three contiguous squares), but they use trial 
and error and do not anticipate creation of new geometric shapes. When 
filling in a frame or picture outline, children use gestalt configuration or 
one component, such as side length (Sarama et al., 1996). For example, if 
several sides of the existing arrangement form a partial boundary of a shape 
(instantiating a schema for it), children can find and place that shape. If 
such cues are not present, they match by a side length. Children may at-
tempt to match corners but do not understand angle as a quantitative entity, 
so they try to match shapes into corners of existing arrangements in which 
their angles do not fit. Rotating and flipping are used, usually by trial and 
error, to try different arrangements (a “picking and discarding” strategy). 
Thus, they can complete a frame that suggests placement of the individual 
shapes but in which several shapes together may play a single semantic role 
in the picture.

Later, preschoolers begin to develop relating parts and wholes thinking. 
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For example, they might combine pattern block shapes (angles that are mul-
tiples of 30°) to make composites that they recognize as new shapes and to 
fill puzzles with growing intentionality and anticipation (“I know what will 
fit”). Shapes are chosen using angles as well as side lengths. The equilateral 
triangle world of pattern blocks provides a microworld, in which matching 
by sides (all of which are equal in length or double the unit length), fitting 
angles (multiples of 30°), and composing (two equilateral triangles can 
“make” the blue rhombus, a rhombus and a triangle make a trapezoid, etc.) 
are facilitating at this beginning step. Eventually, children consider several 
alternative shapes with angles equal to the existing arrangement. Rotation 
and flipping are used intentionally (and mentally, i.e., with anticipation) 
to select and place shapes (Sarama et al., 1996). Children can fill complex 
frames (Sales, 1994) or cover regions (Mansfield and Scott, 1990).

Related to their ability to tile the rectangular section of a plane, chil-
dren can copy designs made from squares (and, for some, also isosceles 
right triangles) and place these shapes onto squared-grid paper. This square-
based microworld is simple and not only facilitates composition, but also 
develops the foundations of much of mathematics (spatial structuring, 
multiplication, area, volume, coordinates, etc.).

Using 3-D shapes, preschoolers combine building blocks using multiple 
spatial relations, extending in multiple directions and with multiple points 
of contact among components, showing flexibility in integrating parts of 
the structure. Thus, they can reliably produce arches, enclosures, corners, 
and crosses, including enclosures that are several blocks in height. Later, 
they can learn to compose building blocks with anticipation, understanding 
what 3-D shape will be produced with a composition of 2 or more other 
(simple, familiar) 3-D shapes.

Step 3 (Age 5)

2-D and �-D Objects

Kindergartners learn to recognize additional shapes, such as paral-
lelograms, and, more importantly, learn to describe why a certain figure is 
classified into a given class of shapes (at the relating parts and wholes level). 
They may therefore discuss that parallelograms have two pairs of sides that 
are equal in length and two pairs of angles of equal size. This remains just 
the beginning of this type of thinking, as concepts of parallelism, perpen-
dicularity, and angle measure develop over many years thereafter.

Kindergartners also learn the names of more 3-D shapes, such as 
spheres, cylinders, prisms, and pyramids. They describe congruent faces of 
such shapes and begin to understand and discuss such properties as parallel 
faces in some contexts (e.g., building with blocks).
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Spatial Relations

Kindergartners begin to use relational terms “right” and “left” in both 
3-D and 2-D contexts, using scaffolds and other guidance as needed. They 
can also continue to develop the ability to tile a plane with square tiles 
without gaps and begin to represent such a tiling by drawing. They can 
learn to count the squares in their tiling, using more systematic strategies 
for keeping track, such as counting one row at a time. Finally, kindergart-
ners can understand and can replicate the perspectives of different viewers. 
These competencies reflect an initial development of thinking at the relating 
parts and wholes level.

Compositions and Decompositions

Kindergartners continue to develop the ability to intentionally and 
systematically combine shapes to make new shapes and complete puzzles. 
They do so with increasing anticipation, based on the shapes’ attributes, 
indicating development of mental images of the component shapes. A sig-
nificant advance is that they can combine shapes with different properties, 
extending the pattern block (30°) shapes common at early steps to such 
shapes as tangrams (angles multiples of 45°), and with sets of various 
shapes that include angles that are multiples of 15° as well as sections of 
circles.

Using 3-D shapes, kindergartners can substitute a composite shape for 
a congruent whole shape. They learn to build complex structures, such as 
bridges with multiple arches, with ramps and stairs at the ends. They can 
build structures with cubes or building blocks from 2-D pictures of these 
structures. Children of this age also can learn to move squares and right 
triangles on grids to create original designs. They can also record these 
designs on squared-grid paper.

Instruction to Support the Teaching-Learning Paths

Learning and Teaching About Shape

Without good experiences—“educative” rather than “mis-educative” 
(Dewey, 1933)—students often rely on impoverished visual prototypes 
that they develop based on limited examples and limited experiences with 
language. In contrast, good experiences include providing a variety of 
 examples—for example, with triangles, not all equilateral or isosceles, and 
not all with a horizontal base, as well as discussions about triangles and their 
attributes that go beyond simple memorized definitions. Most children in the 
United States do not have these good experiences. Teachers and curriculum 
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writers assume that children in early childhood classrooms have little or 
no knowledge of geometric figures. And teachers have had few experiences 
with geometry in their own education or in their professional development. 
Thus, it is unsurprising that most classrooms exhibit limited geometry in-
struction. One early study found that kindergarten children had a great deal 
of knowledge about shapes and matching shapes before instruction began. 
Their teacher tended to elicit and verify this prior knowledge but did not 
add content or develop new knowledge. That is, about two-thirds of the 
interactions had children repeat what they already knew (Thomas, 1982). 
Furthermore, many of their attempts to add content were mathematically 
inaccurate (“every time you cut a square, you get two triangles”).

Such neglect is reflected in student achievement. U.S. students are not 
prepared for learning more sophisticated geometry, especially when com-
pared with students of other nations (Carpenter et al., 1980; Fey et al., 
1984; Kouba et al., 1988; Starkey et al., 1999; Stevenson, Lee, and Stigler, 
1986; Stigler, Lee, and Stevenson, 1990). In some international studies, they 
score at or near the bottom in every geometry task (Beaton et al., 1997; 
Lappan, 1999).

The research reviewed to this point suggests that development of geo-
metric knowledge is fueled by experience and education, not just matura-
tion. If the shape categories children experience are limited, so will be their 
concepts of shapes. If the examples and nonexamples children experience 
are rigid, so will be their mental prototypes. Many children learn to accept 
only isosceles triangles, for example. Others learn richer concepts, even at 
a young age. Such children are likely to have had good experiences with 
shapes, including rich, varied examples and nonexamples and discussions 
about shapes and their characteristics.

Good experiences should begin early. Children need to experience 
varied examples and nonexamples and understand the attributes of shapes 
that are mathematically relevant as well as those (orientation, size) that are 
not. So, examples of triangles and rectangles should include a wide variety 
of shapes, including “long,” “skinny,” and “fat” examples. Direct empiri-
cal support for this finding is strongest for 4-year-olds, who are motivated 
to explore shape (Seo and Ginsburg, 2004) and have achieved substantial 
gains in geometric knowledge through curricular interventions, often sur-
passing the concepts of much older students in business-as-usual curricula 
(Casey and Erkut, in press; Casey et al., in press; Clements and Sarama, 
2007c, in press; Starkey et al., 2006; Starkey, Klein, and Wakeley, 2004).

Beyond perceiving and naming shapes, children can and should discuss 
the parts and attributes of shapes. Again, there are several reasons for this 
recommendation. First, such descriptive activity encourages children to 
move beyond visual prototypes to the use of mathematical criteria. Second, 
discussions redirect attention and build strong concepts, mutually affect-
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ing and benefiting mental images (Clements and Sarama, 2007b). Third, 
these types of discussions are interesting to, and beneficial for, children as 
young as ages 3 and 4 (as the evaluations of the research-based curricula 
show; see also Spitler, Sarama, and Clements, 2003). Instructional activities 
that promote such reflection and discussion include building shapes from 
components. For example, children might build squares and other polygons 
with toothpicks and marshmallows. They might also form shapes with their 
bodies, either singly or with their friends.

Another sequence of activities involves tactile-kinesthetic exploration 
of shapes (feeling shapes hidden in a box). Such nonvisual exploration of 
shapes does not allow simple matching to prototypes. Instead, they force 
children to carefully put the parts of the shape into relationship with each 
other. First, teachers place a small number of shapes on the table and hide a 
shape congruent to one of these in the box (Clements and Sarama, 2007a). 
Children feel the shape and point to the matching shape, then pull out the 
hidden shape to check. Later, children do not have the shapes on the table. 
Instead, they have to name the shape they are feeling. Even later, they have 
to describe the shape without using its name, so that their friends could 
name the shape. In this way, children learn the properties of the shape, 
moving from intuitive to explicit knowledge.

The sequence in Table 6-1 indicates that 3-year-olds may begin to 
associate certain shapes with a known small number, even if only at an 
intuitive level. In comparison, 4-year-olds can explicitly adopt terminol-
ogy of the thinking about parts step, illustrated by a preschooler stating 
that an obtuse triangle “must be a triangle, because it has three sides.” As 
4-year-olds start to see that some shapes have four sides that are the same 
length, they begin a long journey into the relating parts and wholes level 
of geometric thinking. Kindergartners can explicitly discuss why they call 
a certain shape a rectangle. Teachers might start by having children gather 
rectangles and have them describe why their shapes are rectangles in their 
own words. They could also show children a variety of shapes and have 
them decide whether they were or were not rectangles and why. Another 
useful instructional task is to challenge children to use sticks or straws of 
varying lengths to make triangles. Older children could draw a series of 
rectangles, increasing in size. Some children increase the lengths in both 
dimensions (e.g., length and width), some in only one dimension, leading 
to rich discussions.

Early childhood curricula traditionally introduce shapes in four basic 
categories: circle, square, triangle, and rectangle. The separation of the 
square and the rectangle sets up a misconception that violates the math-
ematical relationship between these shapes: A square is a rectangle; it is a 
special kind of rectangle in which all sides are the same length. The idea 
that a square is not a rectangle, however, is rooted by age 5 (Clements 
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et al., 1999; Hannibal and Clements, 2008). It is time to change the pre-
sentation of squares as an isolated set. Instead, recent approaches present 
many examples of squares and rectangles, varying orientation, size, and so 
forth, including squares as examples of rectangles. If children say “that’s 
a square,” teachers respond that it is a square that is a special type of 
rectangle, using double-naming (“it’s a square-rectangle”). This approach 
has been shown to be successful with preschoolers and kindergartners 
 (Clements and Sarama, 2007c, in press; Clements, Sarama, and Wilson, 
2001; Sarama and Clements, 2002). Kindergarten and first graders can 
discuss general categories, such as quadrilaterals and triangles, counting the 
sides of various figures to choose their category. They can then build hierar-
chical relationships of subsets of these general categories (Kay, 1987).

Children should also learn about composing and decomposing shapes 
from other shapes. This competence is significant in that the concepts and 
actions of creating and then iterating units and higher order units in the 
context of constructing patterns, measuring, and computing are established 
bases for mathematical understanding and analysis (Clements et al., 1997b; 
Reynolds and Wheatley, 1996; Steffe and Cobb, 1988). In addition, there 
is empirical support that this type of composition corresponds with, and 
supports, children’s ability to compose and decompose numbers (Clements 
et al., 1996).

The sequence in Table 6-1 is based on a series of developmental stud-
ies describing children’s capabilities (Clements, Sarama, and Wilson, 2001; 
 Mansfield and Scott, 1990; Sales, 1994; Sarama, Clements, and Vukelic, 
1996). These studies were synthesized into an empirically verified develop-
mental progression that identified skills that are achievable for children at 
different ages, especially if provided opportunities to learn (Clements, Wilson, 
and Sarama, 2004). Starting with a lack of competence in composing geo-
metric shapes, they gain abilities to combine shapes into pictures, and finally 
synthesize combinations of shapes into new shapes (composite shapes). As 
further evidence, interventions at the preschool level have shown notable 
gains in this ability for 2-D shapes (Casey and Erkut, in press). Intentional 
interventions with 3-D shape construction (i.e., building with unit blocks) 
have also resulted in statistically significant gains (Casey et al., in press).

Many activities develop these abilities. With a variety of groups of 
shapes, such as pattern blocks, tangrams, or groups with a greater variety of 
shapes, children can be encouraged to combine shapes creatively to create 
pictures and designs. Noting children’s developmental level, teachers can 
make suggestions and pose challenges that will facilitate their learning of 
more sophisticated thinking.

Outline puzzles that can be filled with those same groups of shapes are 
also motivating and particularly useful because they can be designed to pro-
mote a particular level of thinking. Teachers can then view children’s active 
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problem solving and provide them with puzzles that will be attainable but 
challenging—that is, that will promote their development to the next level 
of thinking for 2-D geometric composition.

Similar teaching strategies can develop composition of 3-D shapes. 
Discussions about children’s own creative constructions may make explicit 
ideas about length and symmetry, among others. Also, problems can be 
designed to encourage spatial and mathematical thinking and sequenced 
to match developmental progressions (Casey et al., in press; Kersh, Casey, 
and Young, 2008) early problem for children might be to build an enclo-
sure with walls that are at least two blocks high and include an arch. This 
introduces the problem of bridging, which involves balance, measurement, 
and estimation. A second problem might be to build more complex bridges, 
such as ones with multiple arches and ramps or stairs at the end. This 
introduces planning and seriation. The third problem might be to build a 
complex tower with at least two floors, or stories. Children could be pro-
vided with cardboard ceilings, so they to make the walls fit the constraints 
of the cardboard’s dimensions.

The recommended approaches and activities in this section have been 
performed successfully with 3- and 4-year-olds in classrooms serving low- 
and middle-income children, with strong positive results on child outcomes 
(Clements and Sarama, 2007c, in press; Starkey et al., 2006; Starkey, Klein, 
and Wakeley, 2004).

Use of Manipulati�es, Pictures, and Computers

Research suggests that the use of manipulatives can help young children 
develop geometric and spatial thinking (Clements and McMillen, 1996). 
Using a greater variety of manipulatives is beneficial (Greabell, 1978). 
Such tactile-kinesthetic experiences as body movement and manipulating 
geometric solids help young children learn geometric concepts (Gerhardt, 
1973; Prigge, 1978). Children also fare better with solid cutouts than with 
printed forms, the former encouraging the use of more senses (Stevenson 
and McBee, 1958). However, such benefits are not straightforward or 
certain (Clements, 1999a; National Mathematics Advisory Panel, 2008). 
These materials must be used in the context of a complete mathematics 
program to intentionally develop specific skills and concepts. Also, from 
the beginning, manipulatives should be used to help children—even young 
children—develop mental representations that are increasingly abstract.

Pictures can also support learning. Children as young as 5 or 6 (but not 
most younger children) can use information in pictures to build a pyramid, 
for example (Murphy and Wood, 1981). Thus, pictures can give students 
an immediate, intuitive grasp of certain geometric ideas. Instructionally, 
pictures need to be sufficiently varied so the ideas that students form are 
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not too limited. With experience, children can become sophisticated in 
interpreting geometric relationships in pictures. Diagrams are also useful 
tools for visualizing numerical and arithmetic problems, and the more 
 experience children have with the geometric and measurement attributes 
of pictures and shapes, the more competence they will have in constructing 
and interpreting such diagrams. However, research indicates that it is rare 
for pictures to be superior to manipulatives. In fact, in some cases, pictures 
may not differ in effectiveness from instruction with symbols (Sowell, 
1989). The reason may lie not so much in the nonconcrete nature of the 
pictures as in their nonmanipulability—that is, that children cannot act on 
them as flexibly and extensively. This is one reason that manipulatives on 
 computers—even though 2-D—can benefit learning and teaching.

In fact, computers may have some specific advantages (Clements and 
McMillen, 1996). For example, some computer manipulatives offer more 
flexibility than their noncomputer counterparts. Computer-based pattern 
blocks, for example, can be composed and decomposed in more ways than 
physical pattern blocks. As another example, children and teachers can save 
and later retrieve any arrangement of computer manipulatives. Similarly, 
computers allow storage and replay of sequences of actions on manipula-
tives. Computers can also be used to carry out mathematical processes 
that are difficult or impossible to perform with physical manipulatives. For 
example, a computer environment might automatically draw shapes sym-
metrical to anything the child constructs or draws.

As a final illustration, computers can help children become aware of, 
and mathematize, their actions. For example, very young children can move 
puzzle pieces into place, but they do not think about their actions. Using 
the computer, however, helps children become aware of and describe these 
motions (Clements and Battista, 1991; Johnson-Gentile, Clements, and 
Battista, 1994).

Manipulatives—physical or computer—are one tool that can assist 
children in constructing mathematical meaning. They do not always do 
that, however, and the point of using them lies not in their use in promoting 
manipulations or random play, but to develop abstract ideas. In this view, 
manipulatives are successful to the extent that they become unnecessary 
because children have built mental images and concepts that they use for 
mathematical thinking (Clements, 1999a).

MEASUREMENT

Geometric measurement connects and enriches the two critical domains 
of geometry and number. Children’s understanding of measurement has its 
roots in infancy and the preschool years, and it grows over many years, as 
the research described in Chapter 3 shows. Even preschoolers can be guided 
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to learn important concepts if provided appropriate measurement experi-
ences. They naturally encounter and discuss quantities (Seo and Ginsburg, 
2004). They initially learn to use words that represent quantity or mag-
nitude of a certain attribute. Then they compare two objects directly and 
recognize equality or inequality (Boulton-Lewis, Wilss, and Mutch, 1996). 
At age 4-5, most children can learn to overcome perceptual cues and make 
progress in reasoning about and measuring quantities. They are ready to 
learn to measure, connecting number to the quantity, yet the average child 
in the United States, with limited measurement experience, exhibits limited 
understanding of measurement until the end of the primary grades. We 
examine this development in more detail for the attribute of length.

Length Measurement

Length is a characteristic of an object found by quantifying how far it 
is between the end points of the object. Distance is often used similarly to 
quantify how far it is between any two points in space. Measuring length 
or distance consists of two aspects: (1) identifying a unit of measure and 
subdi�iding (mentally and physically) the object by that unit; (2) placing 
that unit end to end (iterating) alongside the object. Subdividing and unit 
iteration are complex mental accomplishments that are too often ignored 
in traditional measurement curriculum materials and instruction. Many 
researchers therefore go beyond the physical act of measuring to investigate 
children’s understandings of measuring as covering space and quantifying 
that covering. Appendix B describes concepts that are basic to understand-
ing length measurement.

Before kindergarten, many children lack understanding of measurement 
ideas and procedures, such as lining up end points when comparing the 
lengths of two objects. Even 5- to 6-year-olds, given a demarcated ruler, 
write in numerals haphazardly, with little regard to the size of the spaces. 
Few use zero as a starting point, showing a lack of understanding of the 
origin concept. At age 4-5, however, many children can, with opportunities 
to learn, become less dependent on perceptual cues and thus make progress 
in reasoning about or measuring quantities. From kindergarten to Grade 2, 
children can significantly improve in measurement knowledge (Ellis, 1995). 
They learn to represent length with a third object, using transitivity to com-
pare the length of two objects that are not compared directly in a wider 
variety of contexts (Hiebert, 1981). They can also use given units to find the 
length of objects and associate higher counts with longer objects (Hiebert, 
1981, 1984). Some 5-year-olds and most 7-year-olds can use the concept 
of unit to make inferences about the relative size of objects; for example, if 
the numbers of units are the same, but the units are different, the total size 
is different (Nunes and Bryant, 1996).
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Children as young as kindergartners may be proficient with a conven-
tional ruler and understand quantification in limited measurement contexts. 
However, their skill decreases when features of the ruler deviate from the 
convention. Thus, measurement is supported by characteristics of mea-
surement tools, but children still need to develop understanding of key 
measurement concepts. For example, they may initially iterate a unit leav-
ing gaps between subsequent units or overlapping adjacent units (Horvath 
and Lehrer, 2000; Lehrer, 2003). These children may think of measuring as 
the physical activity of placing units along a path in some manner, rather 
than the activity of covering the space/length of the object with no gaps. 
Furthermore, children often begin counting at the numeral 1 on a ruler 
(Lehrer, 2003) or, when counting paces heel-to-toe, start their count with 
the movement of the first foot, missing the first foot and counting the sec-
ond foot as one (Lehrer, 2003; Stephan et al., 2003). Again, children may 
not be thinking about measuring as covering space. Rather, the numerals 
on a ruler (or the placement of a foot) signify when to start counting, not 
an amount of space that has already been covered (i.e., 1 is the space from 
the beginning of the ruler to the hash mark, not the hash mark itself). Many 
children initially find it necessary to iterate the unit until it “fills up” the 
length of the object and will not extend the unit past the end point of the 
object they are measuring (Stephan et al., 2003). Finally, many children do 
not understand that units must be of equal size. They will even measure 
with tools subdivided into different size units and conclude that quantities 
with more units are larger (Ellis et al., 2000). This may be a deleterious 
side effect of counting, in which children learn that the size of objects does 
not affect the result of counting (Mix, Huttenlocher, and Levine, 2002).
However, the researchers base this interpretation on the assumption that 
units are always “given” in counting contexts. In fact, there are counting 
contexts in which this is not the case, such as counting whole toy people 
constructed in two parts, top and bottom, when some are fastened and 
some are separated (Sophian and Kailihiwa, 1998).

Thus, significant development occurs in the early childhood years. 
However, the foundational ideas about length are usually not integrated, 
even by the primary grades. For example, children may still not understand 
the importance of, or be able to create, equal size units (Clements et al., 
1997a; Lehrer, Jenkins, and Osana, 1998; Miller, 1984). This indicates that 
children have not necessarily differentiated fully between counting discrete 
objects and measuring. Even if they show competence with rulers and are 
given identical units, children may not spontaneously iterate those they 
have if they do not have a sufficient number to measure an object (Lehrer, 
Jenkins, and Osana, 1998)—even when the units are rulers themselves 
 (Clements, 1999c). Some children can or do not mentally partition the 
object to be measured.
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Many recent curricula or other instructional guides advise a sequence 
of instruction in which children compare lengths, measure with nonstan-
dard units, incorporate the use of manipulative standard units, and measure 
with a ruler (Clements, 1999c; Kamii and Clark, 1997). The basis for this 
sequence is, explicitly or implicitly, the theory of measurement of Piaget 
et al. (1960). The argument is that this approach motivates children to see 
the need for a standard measuring unit.

Although such an approach has been shown to be effective, it may 
not be necessary to follow a nonstandard-to-standard units approach. For 
example, Boulton-Lewis et al. (1996) found that children used nonstandard 
units unsuccessfully but were successful at an earlier age with standard 
units and measuring instruments. The researchers concluded that nonstan-
dard units are not a good way to initially help children understand the need 
for standardized conventional units in the length measuring process. Just as 
interesting were children’s strategy preferences. Children of every age pre-
ferred to use standard rulers, even though their teachers were encouraging 
them to use nonstandard units.

Furthermore, children measured correctly with a ruler before they could 
devise a measurement strategy using nonstandard units. To realize that ar-
bitrary units are not reliable, a child must reconcile the varying lengths 
and numbers of arbitrary units. Emphasizing nonstandard units too early 
may defeat the purpose it is intended to achieve. That is, early emphasis on 
various nonstandard units may interfere with children’s development of the 
basic measurement concepts required to understand the need for standard 
units. In contrast, using manipulative standard units, or even standard rul-
ers, is less demanding and appears to be a more interesting and meaningful 
real-world activity for young children (Boulton-Lewis et al., 1996). These 
findings have been supported by additional research (Boulton-Lewis, 1987; 
Clements and Battista, 2001; Clements et al., 1997b; Héraud, 1989).

Thus, early experience measuring with different units may be exactly 
the wrong thing to do. Another study (Nunes, Light, and Mason, 1993) 
suggests that children can meaningfully use rulers before they reinvent 
such ideas as units and iteration. In it, children ages 6 to 8 communicated 
about lengths using string, centimeter rulers, or one ruler and one broken 
ruler starting at 4 cm. The traditional ruler supported the children’s rea-
soning more effectively than the string; their accurate performance almost 
doubled. Their strategies and language (it is as long as the “little line just 
after three”) indicated that children gave “correct responses based on 
rigorous procedures, clearly profiting from the numerical representation 
available through the ruler” (p. 46). They did even better with the broken 
ruler than the string, showing that they were not just reading numbers off 
the ruler. The unusual context confused children only 20 percent of the 
time. The researchers concluded that conventional units already chosen 
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and built into the ruler do not make measurement more difficult. Indeed, 
children benefited from the numerical representation provided by even the 
broken ruler.

Such research has led several authors to argue that early rule use should 
be encouraged, not avoided or delayed (Clements, 1999c; Nührenbörger, 
2001; Nunes et al., 1993). Rulers allow children to connect instruction to 
their previous measurement experiences with conventional tools. In con-
trast, dealing with informal, 3-D units deemphasizes the one-dimensional 
(1-D) nature of length and focuses on the counting of discrete objects. In 
this way, it deemphasizes both the zero point and the iteration of line seg-
ment lengths as units (Bragg and Outhred, 2001).

The Piagetian-based argument, that children must conserve length be-
fore they can make sense of ready-made systems, such as rulers (or com-
puter tools, such as those discussed in the following section), may be an 
overstatement. Findings of these studies support a Vygotskian perspective 
(Ellis et al., 2000; Miller, 1989), in which rulers are viewed as cultural 
instruments children can appropriate. That is, children can use rulers, ap-
propriate them, and so build new mental tools. Not only do children prefer 
using rulers, but also they can use them meaningfully and in combination 
with manipulable units to develop understanding of length measurement. In 
general, measurement procedures can serve as cognitive tools (Miller, 1989) 
developed to solve certain practical problems and organize the way children 
think about amount. Measurement concepts may originally be organized in 
terms of the contexts and procedures used to judge, compare, or measure 
specific attributes (Miller, 1989). If so, transformations that do not change 
length but do change number, such as cutting, may be particularly difficult 
for children, more so than traditional conservation questions. Children 
need to learn to distinguish the different attributes (e.g. length, number) 
and learn which transformations affect which attributes.

Another Piagetian idea, from the field of social cognition, is that con-
flict is the genesis of cognitive growth. One series of studies, however, 
indicates that this is not always so. If two strategies, measurement and 
direct comparison, were in conflict, children learned little and benefited 
little from verbal instruction. However, if children saw that the results of 
measurement and direct comparison agreed, then they were more likely to 
use measurement later than were children who observed both procedures 
but did not have the opportunity to compare their results (Bryant, 1982). 
This is a case in which presenting children with conflicting information 
(between strategies or between results of measuring with different units) 
too soon is unhelpful or deleterious.

Whatever the specific instructional approach taken, research demon-
strates several implications. Measurement should not be taught as a simple 
skill. It is a complex combination of concepts and skills that develops over 
years. Teachers who understand the foundational concepts of measurement 
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will be better able to interpret children’s understanding and ask questions 
that will lead them to construct these ideas. Both research with children 
and interviews with teachers support the claims that (a) the principles of 
measurement are difficult for children, (b) they require more attention in 
school than is usually given, (c) time needs to first be spent in informal 
measurement, in which the use of measurement principles is evident, and 
(d) transition from informal to formal measurement needs much more time 
and care, with instruction in formal measure always returning to basic 
principles (see Irwin, Vistro-Yu, and Ell, 2004).

The sequence in Table 6-3 summarizes achievable goals in linear mea-
surement that have been employed in pilot-testing of research-based curri-
cula (Casey et al., 2004; Clements and Sarama, 2004; Greenes et al., 2004; 
Starkey et al., 2004). Again, evaluations confirm the appropriateness of the 
sequencing (Clements and Sarama, 2007c, in press; Starkey et al., 2004, 
2006).

Area Measurement and Spatial Structuring

Area is an amount of 2-D surface that is contained within a boundary. 
Area measurement assumes that a suitable 2-D region is chosen as a unit, 
congruent regions have equal areas, regions do not overlap, and the area 
of the union of two regions that do not overlap (disjoint union) is the sum 
of their areas (Reynolds and Wheatley, 1996). Thus, finding the area of 
a region can be thought of as tiling (or equal partitioning) a region with 
a 2-D unit of measure. Such understandings are complex, and children 
develop them over time. These area understandings do not develop well 
in traditional U.S. instruction (Carpenter et al., 1975), not only for young 
children, but also for preservice teachers (Enochs and Gabel, 1984). A 
study of children from Grades 1, 2, and 3 revealed little understanding of 
area measurement (Lehrer, Jenkins, and Osana, 1998). Asked how much 
space a square (and a triangle) cover, 41 percent of children used a ruler to 
measure length. Although area measurement is typically emphasized in the 
intermediate grades, the literature suggests that some less formal aspects 
of area measurement can be introduced in earlier years. Concepts that are 
essential to understanding and learning area measurement are described in 
Appendix B. One especially important one, spatial structuring, is discussed 
next.

Nascent awareness of area is often noticed in informal observations, 
such as when a child asks for pieces of colored paper to cover their table. 
A way to more formally assess children’s understanding of area is through 
comparison tasks. Some researchers report that preschoolers use only one 
dimension or one salient aspect of the stimulus to compare the area of two 
surfaces (Bausano and Jeffrey, 1975; Maratsos, 1973; Mullet and Paques, 
1991; Piaget et al., 1960; Raven and Gelman, 1984; Russell, 1975; Sena 
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TABLE 6-3 Linear Measurement (Space in One Dimension)

Steps/ 
Ages
(Levels of 
Thinking)

Goals

A. Perceive, Say, 
Describe/Discuss, and 
Construct Objects in 
1-D Space

B. Perceive, Say, 
Describe/Discuss, and 
Construct Spatial 
Relations in 1-D Space

C. Perceive, Say, 
Describe/Discuss, and 
Construct Compositions 
and Decompositions in 
1-D Space

Step 1 (Ages 2 and 3)

Thinking 
visually/
holistically

Informally recognize length as extent of 1-D space.
Compare 2 objects directly, noting equality or 
inequality.

Informally combine 
objects in linear extent.

Step 2 (Age 4)

Thinking 
about 
parts

Compare the length of two objects by representing 
them with a third object.
•  Initial measurement by laying units end to end, 

often with units that are notably square or cubical 
(to facilitate physical concatenation).

Understand that lengths 
can be concatenated.

Relating 
parts and 
wholes

Seriate up to six objects by length (e.g., connecting 
cube towers).

Step 3 (Age 5)

Thinking 
about 
parts 

Measure by repeated use of a unit, moving from 
units that are notably square or cubical to those 
that more closely embody one dimension (e.g., sticks 
or stirrers).

Relating 
parts and 
wholes

Seriate any number of objects by length, even if 
differences between consecutive lengths are not 
palpable perceptually.
•  Initial measurement with simple unit rulers, 

including sticks with unit lengths marked off and 
other unit rulers.

•  Explore the relationship between the size and 
number of units.

Interpret bar graphs to answer questions such as 
“more,” “less,” as well as simple trends, using 
length of the bars.

Add two lengths to 
obtain the length of a 
whole.

NOTE: Less time on 1-D than on 2-D; about 5 percent of the time on 1-D.
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and Smith, 1990). For example, 4- and 5-year-olds may match only one 
side of figures when attempting to compare their areas (Silverman, York, 
and Zuidema, 1984). Others claim that children can integrate more than 
one feature of a region but judge areas with additive combination, for 
example, making implicit area judgments based on the longest single di-
mension (Mullet and Paques, 1991) or height + width rules (Cuneo, 1980; 
Rulence-Paques and Mullet, 1998). Children ages 6 to 8 use a linear ex-
tent rule, such as the diagonal of a rectangle. Only after this age do most 
children move to explicit use of spatial structuring of multiplicative rules 
to solve those studies’ tasks. Note that this does not imply formal use of 
multiplication, but only that their estimates are best approximated by the 
area formula.

In most of these studies, children did not interact with the materials. 
Doing so often changes their strategies and improves their estimates. Chil-
dren as young as age 3 are more likely to make estimates consistent with 
multiplicative rules when using manipulatives than when just asked to make 
a perceptual estimation. For example, they are more accurate when they 
are asked to count out the right number of square tiles to cover a floor and 
put them in a cup (Miller, 1984). Similarly, children ages 5 to 6 were more 
likely to use strategies consistent with multiplicative rules after playing with 
the stimulus materials (Wolf, 1995).

A more accurate strategy for comparing areas than visual estimation is 
superimposition. Children as young as age 3 have a rudimentary concept of 
area based on placing regions on top of one another, but it is not until age 
5 or 6 that their strategy is accurate and efficient. As an illustration, when 
asked to manipulate regions, preschoolers in one study used superimposi-
tion instead of the less precise strategies of laying objects side-by-side or 
comparing single sides, both of which use one dimension at best in estimat-
ing the area (Yuzawa, Bart, and Yuzawa, 2000). Again, the facilitative effect 
of manipulation is shown. Children were given target squares or rectangles 
and asked to choose one that was equal to two standard rectangles in area. 
They performed better when they placed the standard figures on the targets 
than when they made perceptual judgments. They also performed better 
when one target could be overlapped completely with the standard figures 
(even in the perceptual condition, which suggests that they performed a 
mental superposition).

Higher steps in thinking about area may have their roots in the in-
ternalization of such procedures as placing figures on one another, which 
may be aided by cultural tools (manipulatives) or scaffolding by adults 
(see Vygotsky, 1934/1986). For example, kindergartners who were given 
practice with origami (paper folding) increased the spontaneous use of the 
procedure of placing one figure on another for comparing sizes (Yuzawa 
et al., 1999). Because origami practice includes the repeated procedure 
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of folding one sheet into two halves, origami practice might facilitate the 
development of an area concept, which is related to the spontaneous use 
of the procedure.

To measure, a unit must be established. Teachers often assume that 
the product of two lengths structures a region into an area of 2-D units 
for students. However, the construction of a 2-D array from linear units 
is nontrivial. Young children often cannot partition and conserve area 
and instead use counting as a basis for comparing. For example, when 
it was determined that one share of pieces of paper cookie was too little, 
preschoolers cut one of that share’s pieces into two and handed them both 
back, apparently believing that the share was now “more” (Miller, 1984).

As with length measurement, children often cover space, but they do 
not initially do so without gaps or overlapping (i.e., they do not tile the 
region with units). They also initially do not extend units over the bound-
aries when a subdivision of that unit is needed to fill the surface (Stephan 
et al., 2003). Even more limiting, children often choose units that physically 
resemble the region they are covering; for example, choosing bricks to cover 
a rectangular region and beans to cover an outline of their hands (Lehrer, 
2003; Lehrer, Jenkins, and Osana, 1998; Nunes et al., 1993). They also mix 
different shapes (and areas), such as rectangular and triangular, to cover the 
same region and accept a measure of “7” even if the seven covering shapes 
are of different sizes (84 percent of primary grade children; Lehrer, Jenkins, 
and Osana, 1998). These concepts have to be developed before children can 
use iteration of equal units to measure area with understanding. Once these 
problems have been solved, children need to structure 2-D space into an 
organized array of units to achieve multiplicative thinking in determining 
volume, a concept to which we now turn.

Volume Measurement

Volume introduces even more complexity, not only in adding a third 
dimension and thus presenting a significant challenge to students’ spatial 
structuring, but also in the very nature of the materials that are measured 
using volume. This leads to two ways to measure volume, illustrated by 
“packing” a space, such as a 3-D array with cubic units, and “filling” with 
iterations of a fluid unit that takes the shape of the container. For the latter, 
the unit structure may be psychologically 1-D for some children (i.e., simple 
iterative counting that is not processed as geometric 3-D), especially, for 
example, in filling a cylindrical jar in which the (linear) height corresponds 
to the volume (Curry and Outhred, 2005). Given the possible complexities, 
is either of these more or less appropriate for young children, beyond, say, 
informal experiences?

For children in Grades 1-4, competence in filling volume (e.g., estimat-
ing and measuring the number of cups of rice that filled a container) was 
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about equivalent to their competence in corresponding length tasks (Curry 
and Outhred, 2005). The relationship is consistent with the notion that 
the structure of the task is 1-D, exemplified by some students’ treating the 
height of the rice in the container as if it were a unit length and iterating 
it, either mentally or using their fingers, up the side of the container. Some 
students performed better on length, others on filling volume, giving no 
evidence of a relationship between the two. The task contained some extra 
demands, such as creating equal measurements; even many first graders 
made sure that the cup was not over- or underfilled for each iteration. In 
another study, 3- and 4-year-olds understood that unit size affects the mea-
surement of the object’s volume (Sophian, 2002). Thus, simple experience 
with filling volume may be appropriate for young children.

On the other hand, packing volume is more difficult than length and 
area (Curry and Outhred, 2005). Most children had little idea of how to 
estimate or measure on packing tasks. There were substantial increases 
from Grades 2 to 4, but even the older students’ scores were below the 
corresponding scores for the area task. Furthermore, there was a sugges-
tion that understanding of area is a prerequisite to understanding pack-
ing volume. Therefore, children should have many experiences building 
with blocks and filling boxes with cubes. A developmental progression is 
provided in Table 6-2. A full conceptual understanding of 3-D space will 
develop only over several years for most children.

Achievable and Foundational Measurement in 
One, Two, and Three Dimensions

In this section, we describe children’s development of measurement 
in one, two, and three dimensions. We do not consider measurement of 
nongeometric attributes, such as weight/mass, capacity, time, and color, 
because these are more appropriately considered in science and social 
studies curricula. Again, for each area outlined below, children should be 
engaged in activities that cover a range of difficulty, including perceive, say, 
describe/discuss, and construct. Table 6-3 outlines the path for measure-
ment of length.

Step 1 (Ages 2 and 3)

Objects and Spatial Relations

Young children naturally encounter and discuss quantities in their 
play (Ginsburg, Inoue, and Seo, 1999). They first learn to use words that 
represent quantity or magnitude of a certain attribute. Facilitating this 
language is important not only to develop communication abilities, but 
for the development of mathematical concepts. Simply using labels such as 
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“Daddy/Mommy/Baby” and “big/little/tiny” helped children as young as 
3 years to represent and apply higher order seriation abilities, even in the 
face of distracting visual factors, an improvement equivalent to a 2-year 
gain.

At the visual/holistic level (see Table 6-3), children begin by informally 
recognizing length as extent of 1-D space. For example, they may remark of 
a road made with building blocks, “This is long.” They can then compare 
two objects directly and recognize and describe their equality (e.g., “You 
are just as tall as I am!”) or inequality (e.g., “My pencil is longer than 
yours”) in length.

Compositions and Decompositions

At the visual/holistic level, children compose lengths intuitively. For ex-
ample, they may lay building blocks along a path to “make a long road.”

Step 2 (Age 4)

Objects and Spatial Relations

At the thinking about parts level, preschool children learn to compare 
the length of two objects by representing them with a third object and us-
ing transitive reasoning (i.e., indirect comparison) (Boulton-Lewis et al., 
1996). Again, language, such as the differences between counting-based 
terms (e.g., a toy, two trucks) and mass terms (e.g., some sand), can help 
children form relationships between counting and continuous measurement 
(Huntley-Fenner, 2001).

Preschoolers also begin actual measurement by laying physical units 
end to end and counting them to measure a length. However, they may not 
recognize the need for equal-length units and initially may make errors, 
such as leaving gaps between units. One way to engage in discussions of 
such concepts is to apply the resulting measures to comparison situations. 
These concepts and skills develop in parallel with competencies in seriating 
lengths, which emerge last and mark the first level of thinking about relat-
ing parts and wholes.

Preschoolers also begin to be able to cover a rectangular space with 
physical tiles and represent their tilings with simple drawings, although they 
may leave gaps in each and may not align all the squares.

Compositions and Decompositions

At the thinking about parts level, preschoolers understand that lengths 
can be concatenated in this way. This understanding, initially implicit, is 
revealed as children operate on objects.
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Step 3 (Age 5)

Objects and Spatial Relations

Kindergartners move to more sophisticated understanding at the think-
ing about parts level by measuring via the repeated use of a unit. However, 
they initially may not be precise in such iterations. Beginning to develop 
aspects of thinking at the level of relating parts and wholes, they can ex-
plore the concept of the inverse relationship between the size of the unit 
of length and the number of units required to cover a specific length or 
distance, recognizing it at least at an intuitive level. However, they may 
not appreciate the need for identical units. Work with manipulative units 
of standard measure (e.g., 1 inch or 1 cm), along with related use of rulers 
and consistent discussion, will help children learn both the concepts and 
procedures of linear measurement.

Kindergartners also can learn to fill containers with cubes, filling one 
layer at a time, intentionally, all of which involves relationships at the 
thinking about parts level of thinking. In a similar vein, they can learn to ac-
curately count the number of squares in a rectangular array, using increas-
ingly systematic strategies, including counting in rows or columns. They 
represent a complete covering of a rectangle’s area (although initially there 
may be some inaccuracies, such as in the alignment of drawn shapes).

Compositions and Decompositions

Kindergartners understand length composition explicitly. For example, 
they can add to lengths to obtain the length of the whole. They can use a 
simple ruler (or put a length of connecting cubes together) to measure one 
plastic snake and measure the length of another snake to find the total of 
their lengths. Or, more practically, they can measure all sides of a table with 
unmarked (foot) rulers to measure how much ribbon they would need to 
decorate the perimeter of the table. Their use of rows or columns in cover-
ing a rectangular area also implies at least an implicit composition of units 
into a composite unit.

Instruction to Support the Teaching-Learning Path

Length

To move children through the teaching-learning path, teachers of the 
youngest children should observe children in their play, because they en-
counter and discuss measurable quantities frequently (Ginsburg, Inoue, and 
Seo, 1999). Using such words as “bigger/larger/smaller,” and, as soon as 
possible, “longer/shorter” and “taller/shorter” directs children’s attention 
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to these attributes and also helps them apply seriation abilities. Teachers 
should listen carefully to see how they are interpreting and using language 
(e.g., length as the distance between end points or as “one end sticking 
out”).

Children should be given a variety of experiences comparing the size of 
objects. Once they can do so by direct comparison, they should compare 
several items to a single item, such as finding all the objects in the class-
room longer than their forearm. Ideas of transitivity can then be explicitly 
discussed. Next, children should engage in experiences that allow them to 
connect number to length. Teachers should provide children with both con-
ventional rulers and manipulative units using standard units of length, such 
as centimeter cubes (specifically labeled “length-units”; from Dougherty 
and Slovin, 2004). As they explore with these tools, the ideas of length-unit 
iteration (e.g., not leaving space between successive length-units), correct 
alignment (with a ruler), and the zero-point concept can be developed. 
Having older (or more advanced) children draw, cut out, and use their own 
rulers can be used to discuss these aspects explicitly.

In all activities, teachers should focus on the meaning that the numer-
als on the ruler have for children, such as enumerating lengths rather than 
discrete numbers. In other words, classroom discussions should focus on 
“What are you counting?” with the answer in length-units. Given that 
counting discrete items often correctly teaches children that the length-unit 
size does not matter, teachers should plan experiences and reflections on 
the nature of properties of the length-unit in various discrete counting and 
measurement contexts. Comparing results of measuring the same object 
with manipulatives and with rulers and using manipulative length-units to 
make their own rulers help children connect their experiences and ideas.

In second or third grade, teachers might introduce the need for standard 
length-units and the relation between the size and number of length-units. 
The relationship between the size and number of length-units, the need for 
standardization of length-units, and additional measuring devices can be 
explored at this time. The early use of multiple nonstandard length-units 
would not be used until this point (see Carpenter and Lewis, 1976). Instruc-
tion focusing on children’s interpretations of their measuring activity can 
enable them to use flexible starting points on a ruler to indicate measures 
successfully (Lubinski and Thiessen, 1996). Without such attention, chil-
dren are just reading off whatever ruler number aligns with the end of the 
object into the intermediate grades (Lehrer, Jenkins, and Osana, 1998).

By kindergarten, length is used in other areas, such as understanding 
addition and graphing. For example, bar graphs use length to represent 
counts or measures. Kindergartners can answer such questions as “more” 
and “less,” as well as simple trends, using length of the bars.

Emphasis on children’s solving real measurement problems and, in so 
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doing, building and iterating units, as well as units of units, helps them de-
velop strong concepts and skills. Teachers should help children closely con-
nect the use of manipulative units and rulers. When conducted in this way, 
measurement tools and procedures become tools for mathematics and tools 
for thinking about mathematics (Clements, 1999c; Miller, 1984, 1989). 
Well before first grade, children have begun the journey toward that end.

Area

Children need to structure an array to understand area as truly 2-D (see 
Appendix B). Play with structured materials, such as unit blocks, pattern 
blocks, and tiles, can lay the groundwork for children’s spatial structuring, 
although achieving the conceptual benchmark will not be achieved until 
 after the primary grades for most children, even with high-quality instruc-
tion. In brief, the too-frequent practice of simple counting of units to find 
area (achievable by preschoolers) leading directly to teaching formulas 
may not build the requisite foundational concepts (Lehrer, 2003). Instead, 
educators should build on young children’s initial spatial intuitions and ap-
preciate their need to construct the idea of measurement units—including 
development of a measurement sense for standard units, for example, find-
ing common objects in the environment that have a unit measure. Children 
need to have many experiences covering quantities with appropriate mea-
surement units, counting those units, and spatially structuring the object 
they are to measure, in order to build a firm foundation for eventual use 
for formulas. For example, children might build rectangular arrays with 
square tiles and learn to count the number of manipulatives used in each. 
Eventually, they need to link counting by groups to reflect the structure of 
rectangular arrays, for example, counting the squares in an array by skip-
counting the number in each row.

This long developmental process usually only begins in the years before 
first grade. However, we should also appreciate the importance of these 
early conceptualizations. For example, 3- and 4-year-olds’ use of a linear 
rating scale to judge area, even if using an additive rule, indicates an im-
pressive level of quantitative ability and, according to some, nascent mental 
structures for algebra at an early age (Cuneo, 1980).

Competencies in the major realms of geometry/spatial thinking and 
number are connected throughout development. The earliest competen-
cies may share common perceptual and representational origins (Mix, 
 Huttenlocher, and Levine, 2002). Infants are sensitive to both the amount of 
liquid in a container (Gao, Levine, and Huttenlocher, 2000) and the distance 
away a toy is hidden in a long sandbox (Newcombe, Huttenlocher, and 
Learmonth, 1999). Visual-spatial deficits in early childhood are detrimental 
to children’s development of numerical competencies (Semrud-Clikeman 
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and Hynd, 1990; Spiers, 1987). Other evidence shows specific spatially re-
lated learning disabilities in arithmetic, possibly more so for boys than girls 
(Share, Moffitt, and Silva, 1988). Primary school children’s thinking about 
units and units of units was found to be consistent in both spatial and nu-
merical problems (Clements et al., 1997a). In this and other ways, specific 
spatial abilities appear to be related to other mathematical competencies 
(Brown and Wheatley, 1989; Clements and Battista, 1992; Fennema and 
Carpenter, 1981; Wheatley, Brown, and Solano, 1994). Geometric measure-
ment connects the spatial and numeric realms explicitly.

SUMMARY

This chapter describes geometry and spatial thinking and measure-
ment, which comprise the second essential domain for young children’s 
mathematical development. The research in this domain is less developed 
than for number, but it does provide guidance for educators regarding what 
young children can and should do to develop competence in these areas. 
The teaching-learning path for geometry and spatial relations demonstrates 
how young children move through levels of thinking as they learn about 
2-D and 3-D objects. The use of manipulatives, pictures, and computers 
play an important role in facilitating children’s progress along this path. 
Early childhood teachers should help children extend their thinking by 
building on simple conventional models (e.g., child represents classroom 
with cut out pictures) and challenge them by asking them to use geometric 
correspondences (e.g., direction—which way?, identification—which ob-
ject?) to solve problems.

Measurement, the second major area covered in this chapter, con-
nects and enriches the two crucial domains of geometry and number. The 
teaching-learning path for measurement describes children’s developing 
competence in linear measurement and initial steps toward understanding 
areas and volume. The teaching-learning path outlined for length em-
phasizes the need to provide experiences that allow children to compare 
the size of objects and to connect number to length. Children also need 
opportunities to solve real measurement problems which can help build 
their understanding of units, length-unit iteration, correct alignment and 
the zero-point concept. Children’s early competency in measurement is 
facilitated by play with structured materials, such as unit blocks, pattern 
blocks, and tiles and strengthened through opportunities to reflect on and 
discuss their experiences.

It is important to note that the potential of young children’s learning 
in geometry and measurement if a conscientious, sequenced development 
of spatial thinking and geometry were provided to them throughout their 
earliest years is not yet known. Research on the learning of shapes and 
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certain aspects of visual literacy suggests the inclusion of these topics in the 
early years can be powerful. Specific spatial abilities appear to be related to 
other mathematical competencies and geometric measurement connects the 
spatial and numeric realms explicitly (Brown and Wheatley, 1989; Clements 
and Battista, 1992; Fennema and Carpenter, 1981; Wheatley et al., 1994). 
However, there is insufficient evidence on the effects (efficacy and efficiency) 
of including such topics as congruence, similarity, transformations, and 
angles in curricula and teaching at specific age levels (Clements and Sarama, 
2007b; National Mathematics Advisory Panel, 2008). Such research, as 
well as longitudinal research on many such topics, is needed.

REFERENCES AND BIBLIOGRAPHY

Anderson, J.R. (2000). Cogniti�e Psychology and Its Implications (5th ed.). New York: W.H. 
Freeman.

Ansari, D., Donlan, C., Thomas, M.S.C., Ewing, S.A., Peen, T., and Karmiloff-Smith, A. 
(2003). What makes counting count? Verbal and visuo-spatial contributions to typi-
cal and atypical number development. Journal of Experimental Child Psychology, �5, 
50-62.

Battista, M.T., and Clements, D.H. (1996). Students’ understanding of three-dimensional rect-
angular arrays of cubes. Journal for Research in Mathematics Education, 2�, 258-292.

Battista, M.T., Clements, D.H., Arnoff, J., Battista, K., and Borrow, C.V.A. (1998). Students’ 
spatial structuring of 2D arrays of squares. Journal for Research in Mathematics Educa-
tion, 2�, 503-532.

Bausano, M.K., and Jeffrey, W.E. (1975). Dimensional salience and judgments of bigness by 
three-year-old children. Child De�elopment, �6, 988-991.

Beaton, A.E., Mullis, I.V.S., Martin, M.O., Gonzalez, E J., Kelly, D.L., and Smith, T.A. (1997, 
November). Mathematics Achie�ement in the Middle School Years: IEA’s Third Interna-
tional Mathematics and Science Study (TIMSS). Available: http://timss.bc.edu/timss1995i/
MathB.html [accessed October 2008].

Beilin, H. (1984). Cognitive theory and mathematical cognition: Geometry and space. In B. 
Gholson and T.L. Rosenthal (Eds.), Applications of Cogniti�e-De�elopmental Theory 
(pp. 49-93). New York: Academic Press.

Beilin, H., Klein, A., and Whitehurst, B. (1982). Strategies and Structures in Understanding 
Geometry. New York: City University of New York.

Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z., and St. George, M. (2000). The neurocogni-
tive profile and Williams syndrome: A complex pattern of strengths and weaknesses. 
Journal of Cogniti�e Neuroscience, 12(Suppl.), 7-29.

Bishop, A.J. (1980). Spatial abilities and mathematics achievement—A review. Educational 
Studies in Mathematics, 11, 257-269.

Blades, M., Spencer, C., Plester, B., and Desmond, K. (2004). Young children’s recognition and 
representation of urban landscapes: From aerial photographs and in toy play. In G.L. 
Allen (Ed.), Human Spatial Memory: Remembering Where (pp. 287-308). Mahwah, NJ: 
Erlbaum.

Blaut, J.M., and Stea, D. (1974). Mapping at the age of three. Journal of Geography, ��(7), 
5-9.

Bornstein, M.H., Ferdinandsen, K., and Gross, C.G. (1981). Perception of symmetry in in-
fancy. De�elopmental Psychology, 1�, 82-86.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

212 MATHEMATICS LEARNING IN EARLY CHILDHOOD

Boulton-Lewis, G.M. (1987). Recent cognitive theories applied to sequential length measuring 
knowledge in young children. British Journal of Educational Psychology, 5�, 330-342.

Boulton-Lewis, G.M., Wilss, L.A., and Mutch, S.L. (1996). An analysis of young children’s 
strategies and use of devices of length measurement. Journal of Mathematical Beha�ior, 
15, 329-347.

Bowerman, M. (1996). Learning how to structure space for language: A cross-linguistic per-
spective. In P. Bloom, M.A. Peterson, L. Nadel, and M.F. Garrett (Eds.), Language and 
Space (pp. 385-436). Cambridge, MA: MIT Press.

Bragg, P., and Outhred, L. (2001). So that’s what a centimetre looks like: Students’ under-
standings of linear units. In M.V.D. Heuvel-Panhuizen (Ed.), Proceedings of the 25th 
Conference of the International Group for the Psychology in Mathematics Education 
(vol. 2, pp. 209-216). Utrecht, The Netherlands: Freudenthal Institute.

Bronowski, J. (1947). Mathematics. In D. Thompson and J. Reeves (Eds.), The Quality of 
Education. London, England: Muller.

Brosnan, M.J. (1998). Spatial ability in children’s play with Lego blocks. Perceptual and Mo-
tor Skills, ��, 19-28.

Brown, D.L., and Wheatley, G.H. (1989). Relationship between spatial knowledge and math-
ematics knowledge. In C.A. Maher, G.A. Goldin, and R.B. Davis (Eds.), Proceedings of 
the Ele�enth Annual Meeting, North American Chapter of the International Group for 
the Psychology of Mathematics Education (pp. 143-148). New Brunswick, NJ: Rutgers 
University.

Bryant, P.E. (1982). The role of conflict and of agreement between intellectual strategies in 
children’s ideas about measurement. British Journal of Psychology, ��, 242-251.

Burger, W.F., and Shaughnessy, J.M. (1986). Characterizing the van Hiele levels of develop-
ment in geometry. Journal for Research in Mathematics Education, 1�, 31-48.

Carpenter, T.P., and Lewis, R. (1976). The development of the concept of a standard unit of 
measure in young children. Journal for Research in Mathematics Education, �, 53-58.

Carpenter, T.P., Coburn, T., Reys, R., and Wilson, J. (1975). Notes from national assessment: 
Basic concepts of area and volume. Arithmetic Teacher, 22, 501-507.

Carpenter, T.P., Corbitt, M.K., Kepner, H.S., Lindquist, M.M., and Reys, R.E. (1980). Na-
tional assessment. In E. Fennema (Ed.), Mathematics Education Research: Implications 
for the 1��0s (pp. 22-38). Alexandria, VA: Association for Supervision and Curriculum 
Development.

Casey, B., Paugh, P., and Ballard, N. (2002). Sneeze Builds a Castle. Bothell, WA: The Wright 
Group/McGraw-Hill.

Casey, B., Kersh, J.E., and Young, J.M. (2004). Storytelling sagas: An effective medium 
for teaching early childhood mathematics. Early Childhood Research Quarterly, 1�, 
167-172.

Casey, M.B. (2005, April). E�aluation of NSF-Funded Mathematics Materials: Use of Story-
telling Contexts to Impro�e Kindergartners’ Geometry and Block-Building Skills. Paper 
presented at the National Council of Supervisors of Mathematics, Anaheim, CA.

Casey, M.B., and Erkut, S. (2005, April). Early Spatial Inter�entions Benefit Girls and Boys. 
Paper presented at the Biennial Meeting of the Society for Research in Child Develop-
ment, Atlanta, GA.

Casey, M.B., and Erkut, S. (in press). Use of a storytelling context to improve girls’ and boys’ 
geometry skills in kindergarten. Journal of Applied De�elopmental Psychology.

Casey, M.B., Nuttall, R.L., and Pezaris, E. (2001). Spatial-mechanical reasoning skills versus 
mathematics self-confidence as mediators of gender differences on mathematics subtests 
using cross-national gender-based items. Journal for Research in Mathematics Educa-
tion, �2, 28-57.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

PATHS FOR GEOMETRY, SPATIAL THINKING, AND MEASUREMENT 21�

Casey, M.B., Andrews, N., Schindler, H., Kersh, J.E., and Samper, A. (in press). The develop-
ment of spatial skills through interventions involving block building activities. Cognition 
and Instruction.

Clements, D.H. (1999a). Concrete manipulatives, concrete ideas. Contemporary Issues in 
Early Childhood, 1(1), 45-60.

Clements, D.H. (1999b). Subitizing: What is it? Why teach it? Teaching Children Mathemat-
ics, 5, 400-405.

Clements, D.H. (1999c). Teaching length measurement: Research challenges. School Science 
and Mathematics, ��(1), 5-11.

Clements, D.H. (2003). Teaching and learning geometry. In J. Kilpatrick, W.G. Martin, and D. 
Schifter (Eds.), A Research Companion to Principles and Standards for School Mathemat-
ics (pp. 151-178). Reston, VA: National Council of Teachers of Mathematics.

Clements, D.H., and Barrett, J. (1996). Representing, connecting and restructuring knowledge: 
A micro-genetic analysis of a child’s learning in an open-ended task involving perimeter, 
paths and polygons. In E. Jakubowski, D. Watkins, and H. Biske (Eds.), Proceedings of 
the 1�th Annual Meeting of the North America Chapter of the International Group for 
the Psychology of Mathematics Education (vol. 1, pp. 211-216). Columbus, OH: ERIC 
Clearinghouse for Science, Mathematics, and Environmental Education.

Clements, D.H., and Battista, M.T. (1991). The De�elopment of a Logo-Based Elementary 
School Geometry Curriculum. Final Report, NSF Grant No. MDR 8651668. Buffalo, 
NY/Kent State, OH: State University of New York and Kent State University Presses.

Clements, D.H., and Battista, M.T. (1992). Geometry and spatial reasoning. In D.A. Grouws 
(Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 420-464). 
New York: Macmillan.

Clements, D.H., and Battista, M.T. (2001). Length, perimeter, area, and volume. In L.S. 
Grinstein and S.I. Lipsey (Eds.), Encyclopedia of Mathematics Education (pp. 406-410). 
New York: RoutledgeFalmer.

Clements, D.H., and McMillen, S. (1996). Rethinking “concrete” manipulatives. Teaching 
Children Mathematics, 2(5), 270-279.

Clements, D.H., and Sarama, J. (1998). Building Blocks—Foundations for Mathematical 
Thinking, Pre-Kindergarten to Grade 2: Research-based Materials De�elopment. NSF 
Grant No. ESI-9730804. Buffalo: State University of New York. Available: http://www.
gse.buffalo.edu/org/buildingblocks/ [accessed July 2009].

Clements, D.H., and Sarama, J. (2003). Young children and technology: What does the re-
search say? Young Children, 5�(6), 34-40.

Clements, D.H., and Sarama, J. (2004). Building blocks for early childhood mathematics. 
Early Childhood Research Quarterly, 1�, 181-189.

Clements, D.H., and Sarama, J. (2007a). Building Blocks—SRA Real Math Teacher’s Edition, 
Grade PreK. Columbus, OH: SRA/McGraw-Hill.

Clements, D.H., and Sarama, J. (2007b). Early childhood mathematics learning. In F.K. Lester, 
Jr. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 
461-555). New York: Information Age.

Clements, D.H., and Sarama, J. (2007c). Effects of a preschool mathematics curriculum: 
Summative research on the building blocks project. Journal for Research in Mathematics 
Education, ��, 136-163.

Clements, D.H., and Sarama, J. (in press). Experimental evaluation of the effects of a research-
based preschool mathematics curriculum. American Educational Research Journal.

Clements, D.H., and Stephan, M. (2004). Measurement in preK-2 mathematics. In D.H. 
 Clements, J. Sarama and A.-M. DiBiase (Eds.), Engaging Young Children in Mathematics: 
Standards for Early Childhood Mathematics Education (pp. 299-317). Mahwah, NJ: 
Erlbaum.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

21� MATHEMATICS LEARNING IN EARLY CHILDHOOD

Clements, D.H., Sarama, J., Battista, M.T., and Swaminathan, S. (1996). Development of 
students’ spatial thinking in a curriculum unit on geometric motions and area. In E. 
Jakubowski, D. Watkins, and H. Biske (Eds.), Proceedings of the 1�th Annual Meeting of 
the North America Chapter of the International Group for the Psychology of Mathemat-
ics Education (vol. 1, pp. 217-222). Columbus, OH: ERIC Clearinghouse for Science, 
Mathematics, and Environmental Education.

Clements, D H., Battista, M.T., Sarama, J., and Swaminathan, S. (1997a). Development of 
students’ spatial thinking in a unit on geometric motions and area. The Elementary 
School Journal, ��, 171-186.

Clements, D.H., Battista, M.T., Sarama, J., Swaminathan, S., and McMillen, S. (1997b). Stu-
dents’ development of length measurement concepts in a logo-based unit on geometric 
paths. Journal for Research in Mathematics Education, 2�(1), 70-95.

Clements, D.H., Swaminathan, S., Hannibal, M.A.Z., and Sarama, J. (1999). Young children’s 
concepts of shape. Journal for Research in Mathematics Education, �0, 192-212.

Clements, D.H., Battista, M.T., and Sarama, J. (2001). Logo and geometry. Journal for Re-
search in Mathematics Education Monograph Series, 10.

Clements, D.H., Sarama, J., and Wilson, D.C. (2001). Composition of geometric figures. In 
M.v.d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International 
Group for the Psychology of Mathematics Education (vol. 2, pp. 273-280). Utrecht, The 
Netherlands: Freudenthal Institute.

Clements, D.H., Wilson, D.C., and Sarama, J. (2004). Young children’s composition of geo-
metric figures: A learning trajectory. Mathematical Thinking and Learning, 6, 163-184.

Cooper, T.J., and Warren, E. (2007, April). De�eloping Equi�alence of Expressions in the Early 
to Middle Elementary Years. Paper presented at the Research Pre-session of the 85th An-
nual Meeting of the National Council of Teachers of Mathematics, Atlanta, GA.

Cuneo, D. (1980). A general strategy for quantity judgments: The height + width rule. Child 
De�elopment, 51, 299-301.

Curry, M., and Outhred, L. (2005). Conceptual understanding of spatial measurement. In P. 
Clarkson, A. Downtown, D. Gronn, M. Horne, A. McDonough, R. Pierce and A. Roche 
(Eds.), Building Connections: Research, Theory, and Practice: Proceedings of the 2�th 
Annual Conference of the Mathematics Education Research Group of Australasia (pp. 
265-272). Melbourne, Australia: MERGA.

Dehaene, S., Izard, V., Pica, P., and Spelke, E.S. (2006). Core knowledge of geometry in an 
Amazonian indigene group. Science, �11, 381-384.

Del Grande, J.J. (1986). Can grade two children’ spatial perception be improved by inserting 
a transformation geometry component into their mathematics program? Dissertation 
Abstracts International, ��, 3689A.

Dewey, J. (1933). How We Think: A Restatement of the Relation of Reflecti�e Thinking to 
the Educati�e Process. Boston, MA: D.C. Heath.

Dougherty, B.J., and Slovin, H. (2004). Generalized diagrams as a tool for young children’s 
problem solving. In M.J. Høines and A.B. Fuglestad (Eds.), Proceedings of the 2�th 
Conference of the International Group for the Psychology in Mathematics Education 
(vol. 2, pp. 295-302). Bergen, Norway: Bergen University College.

Ebbeck, M. (1984). Equity for boys and girls: Some important issues. Early Child De�elop-
ment and Care, 1�, 119-131.

Ehrlich, S.B., Levine, S.C., and Goldin-Meadow, S. (2005, April). Early Sex Differences in 
Spatial Skill: The Implications of Spoken and Gestured Strategies. Paper presented at the 
Biennial Meeting of the Society for Research in Child Development, Atlanta, GA.

Ellis, S. (1995). De�elopmental Changes in Children’s Understanding of measurement Proce-
dures and Principles. Paper presented at the biennial meetings of the Society for Research 
in Child Development, Indianapolis, IN.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

PATHS FOR GEOMETRY, SPATIAL THINKING, AND MEASUREMENT 215

Enochs, L.G., and Gabel, D.L. (1984). Preservice elementary teaching conceptions of volume. 
School Science and Mathematics, ��, 670-680.

Eylon, B.-S., and Rosenfeld, S. (1990). The Agam Project: Culti�ating Visual Cognition in 
Young Children. Rehovot, Israel: Department of Science Teaching, Weizmann Institute 
of Science.

Fennema, E.H., and Carpenter, T.P. (1981). Sex-related differences in mathematics: Results 
from national assessment. Mathematics Teacher, ��, 554-559.

Fennema, E.H., and Sherman, J. (1977). Sex-related differences in mathematics achievement, 
spatial visualization, and affective factors. American Educational Research Journal, 1�, 
51-71.

Fennema, E.H., and Sherman, J.A. (1978). Sex-related differences in mathematics achievement 
and related factors. Journal for Research in Mathematics Education, �, 189-203.

Fey, J., Atchison, W.F., Good, R.A., Heid, M.K., Johnson, J., Kantowski, M.G., et al. (1984). 
Computing and Mathematics: The Impact on Secondary School Curricula. College Park: 
University of Maryland.

Filippaki, N., and Papamichael, Y. (1997). Tutoring conjunctions and construction of geom-
etry concepts in the early childhood education: The case of the angle. European Journal 
of Psychology of Education, 12(3), 235-247.

Fisher, N.D. (1978). Visual influences of figure orientation on concept formation in geometry. 
Dissertation Abstracts International, ��, 4639A.

Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht, The Netherlands: 
Reidel.

Fuson, K.C., and Hall, J.W. (1982). The acquisition of early number word meanings: A con-
ceptual analysis and review. In H.P. Ginsburg (Ed.), Children’s Mathematical Thinking 
(pp. 49-107). New York: Academic Press.

Fuson, K.C., and Murray, C. (1978). The haptic-visual perception, construction, and drawing 
of geometric shapes by children ages two to five: A Piagetian extension. In R. Lesh and 
D. Mierkiewicz (Eds.), Concerning the De�elopment of Spatial and Geometric Concepts 
(pp. 49-83). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Envi-
ronmental Education.

Fuys, D., Geddes, D., and Tischler, R. (1988). The �an Hiele Model of Thinking in Geometry 
Among Adolescents. Reston, VA: National Council of Teachers of Mathematics.

Gagatsis, A., and Patronis, T. (1990). Using geometrical models in a process of reflective 
thinking in learning and teaching mathematics. Educational Studies in Mathematics, 
21, 29-54.

Gao, F., Levine, S.C., and Huttenlocher, J. (2000). What do infants know about continuous 
quantity? Journal of Experimental Child Psychology, ��, 20-29.

Gelman, R., and Williams, E.M. (1997). Enabling constraints for cognitive development and 
learning: Domain specificity and epigenesis. In D. Kuhn and R. Siegler (Eds.), Cognition, 
Perception, and Language, Volume 2: Handbook of Child Psychology (5th ed., pp. 575-
630). New York: Wiley.

Gerhardt, L.A. (1973). Mo�ing and Knowing: The Young Child Orients Himself in Space. 
Englewood Cliffs, NJ: Prentice-Hall.

Gibson, E.J., Gibson, J.J., Pick, A.D., and Osser, H. (1962). A developmental study of the 
discrimination of letter-like forms. Journal of Comparati�e and Physiological Psychol-
ogy, 55, 897-906.

Ginsburg, A., Cooke, G., Leinwand, S., Noell, J., and Pollock, E. (2005). Reassessing U.S. 
International Mathematics Performance: New Findings from the 200� TIMSS and PISA. 
Washington, DC: American Institutes for Research.

Ginsburg, H.P., Inoue, N., and Seo, K.-H. (1999). Young children doing mathematics: Obser-
vations of everyday activities. In J.V. Copley (Ed.), Mathematics in the Early Years (pp. 
88-99). Reston, VA: National Council of Teachers of Mathematics.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

216 MATHEMATICS LEARNING IN EARLY CHILDHOOD

Ginsburg, H.P., Greenes, C., and Balfanz, R. (2003). Big Math for Little Kids. Parsippany, 
NJ: Dale Seymour.

Gopnik, A., and Meltzoff, A.N. (1986). Words, plans, things, and locations: Interactions 
between semantic and cognitive development in the one-word stage. In S.A. Kuczaj, II, 
and M.D. Barrett (Eds.), The De�elopment of Word Meaning (pp. 199-223). Berlin, 
Germany: Springer-Verlag.

Greabell, L.C. (1978). The effect of stimuli input on the acquisition of introductory geomet-
ric concepts by elementary school children. School Science and Mathematics, ��(4), 
320-326.

Greenes, C., Ginsburg, H.P., and Balfanz, R. (2004). Big math for little kids. Early Childhood 
Research Quarterly, 1�, 159-166.

Guay, R.B., and McDaniel, E. (1977). The relationship between mathematics achievement and 
spatial abilities among elementary school children. Journal for Research in Mathematics 
Education, �, 211-215.

Hannibal, M.A.Z., and Clements, D.H. (2008). Young Children’s Understanding of Basic 
Geometric Shapes. Manuscript submitted.

Héraud, B. (1989). A conceptual analysis of the notion of length and its measure. In G. 
 Vergnaud, J. Rogalski, and M. Artique (Eds.), Proceedings of the 1�th Conference of the 
International Group for the Psychology of Mathematics Education (pp. 83-90). Paris, 
France: City University.

Hiebert, J.C. (1981). Cognitive development and learning linear measurement. Journal for 
Research in Mathematics Education, 12, 197-211.

Hiebert, J.C. (1984). Why do some children have trouble learning measurement concepts? 
Arithmetic Teacher, �1(7), 19-24.

Hofmeister, A.M. (1993). Elitism and reform in school mathematics. Remedial and Special 
Education, 1�(6), 8-13.

Horvath, J., and Lehrer, R. (2000). The design of a case-based hypermedia teaching tool. 
International Journal of Computers for Mathematical Learning, 5, 115-141.

Howlin, P., Davies, M., and Udwin, U. (1998). Syndrome specific characteristics in Williams 
syndrome: To what extent do early behavioral patterns persist into adult life? Journal of 
Applied Research in Intellectual Disabilities, 11, 207-226.

Huntley-Fenner, G. (2001). Why count stuff?: Young preschoolers do not use number for 
measurement in continuous dimensions. De�elopmental Science, �, 456-462.

Inhelder, B., Sinclair, H., and Bovet, M. (1974). Learning and the De�elopment of Cognition. 
Cambridge, MA: Harvard University Press.

Irwin, K.C., Vistro-Yu, C.P., and Ell, F.R. (2004). Understanding linear measurement: A 
comparison of Filipino and New Zealand children. Mathematics Education Research 
Journal, 16(2), 3-24.

Johnson-Gentile, K., Clements, D.H., and Battista, M.T. (1994). The effects of computer and 
noncomputer environments on students’ conceptualizations of geometric motions. Jour-
nal of Educational Computing Research, 11(2), 121-140.

Jones, S.S., and Smith, L.B. (2002). How children know the relevant properties for generalizing 
object names. De�elopmental Science, 2, 219-232.

Jordan, N.C., Kaplan, D., Oláh, L.N., and Locuniak, M.N. (2006). Number sense growth in 
kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. 
Child De�elopment, ��, 153-175.

K-13 Geometry Committee. (1967). Geometry: Kindergarten to Grade Thirteen. Toronto, 
Canada: Ontario Institute for Studies in Education.

Kabanova-Meller, E.N. (1970). The role of the diagram in the application of geometric theo-
rems. In J. Kilpatrick and I. Wirszup (Eds.), So�iet Studies in the Psychology of Learning 
and Teaching Mathematics (vol. 4, pp. 7-49). Chicago: University of Chicago Press.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

PATHS FOR GEOMETRY, SPATIAL THINKING, AND MEASUREMENT 21�

Kamii, C., and Clark, F.B. (1997). Measurement of length: The need for a better approach to 
teaching. School Science and Mathematics, ��, 116-121.

Kamii, C., Miyakawa, Y., and Kato, Y. (2004). The development of logico-mathematical 
knowledge in a block-building activity at ages 1-4. Journal of Research in Childhood 
Education, 1�, 13-26.

Kay, C.S. (1987). Is a Square a Rectangle? The Development of First-Grade Students’ Un-
derstanding of Quadrilaterals with Implications for the van Hiele Theory of the De-
velopment of Geometric Thought. Doctoral dissertation, University of Georgia, 1986. 
Dissertation Abstracts International, ��(08), 2934A.

Kersh, J., Casey, B., and Young, J.M. (2008). Research on spatial skills and block building in 
girls and boys: The relationship to later mathematics learning. In B. Spodek and O.N. 
Saracho (Eds.), Contemporary Perspecti�es on Mathematics, Science, and Technology in 
Early Childhood Education. Charlotte, NC: Information Age.

Klein, A., Starkey, P., and Wakeley, A. (1999). Enhancing Pre-kindergarten Children’s Readi-
ness for School Mathematics. Paper presented at the American Educational Research 
Association.

Klein, A., Starkey, P., and Ramirez, A.B. (2002). Pre-K Mathematics Curriculum. Glenview, 
IL: Scott Foresman.

Kosslyn, S.M. (1983). Ghosts in the Mind’s Machine. New York: W.W. Norton.
Kouba, V.L., Brown, C.A., Carpenter, T.P., Lindquist, M.M., Silver, E.A., and Swafford, J.O. 

(1988). Results of the fourth NAEP assessment of mathematics: Measurement, geometry, 
data interpretation, attitudes, and other topics. Arithmetic Teacher, �5(9), 10-16.

Lappan, G. (1999). Geometry: The forgotten strand. NCTM News Bulletin, �6(5), 3.
Lean, G., and Clements, M.A. (1981). Spatial ability, visual imagery, and mathematical per-

formance. Educational Studies in Mathematics, 12, 267-299.
Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W.G. Mar-

tin, and D. Schifter (Eds.), A Research Companion to Principles and Standards for 
School Mathematics (pp. 179-192). Reston, VA: National Council of Teachers of 
Mathematics.

Lehrer, R., Jenkins, M., and Osana, H. (1998). Longitudinal study of children’s reasoning 
about space and geometry. In R. Lehrer and D. Chazan (Eds.), Designing Learning 
En�ironments for De�eloping Understanding of Geometry and Space (pp. 137-167). 
Mahwah, NJ: Erlbaum.

Lehrer, R., Jacobson, C., Thoyre, G., Kemeny, V., Strom, D., Horvarth, J., et al. (1998). De-
veloping understanding of geometry and space in the primary grades. In R. Lehrer and 
D. Chazan (Eds.), Designing Learning En�ironments for De�eloping Understanding of 
Geometry and Space (pp. 169-200). Mahwah, NJ: Erlbaum.

Leushina, A.M. (1974/1991). The De�elopment of Elementary Mathematical Concepts in 
Preschool Children (vol. 4). Reston, VA: National Council of Teachers of Mathematics.

Levine, S.C., Huttenlocher, J., Taylor, A., and Langrock, A. (1999). Early sex differences in 
spatial skill. De�elopmental Psychology, �5(4), 940-949.

Lubinski, C.A., and Thiessen, D. (1996). Exploring measurement through literature. Teaching 
Children Mathematics, 2, 260-263.

Mansfield, H.M., and Scott, J. (1990). Young children solving spatial problems. In G. Booker, 
P. Cobb and T.N. deMendicuti (Eds.), Proceedings of the 1�th Annual Conference of the 
International Group for the Psychology of Mathematics Education (vol. 2, pp. 275-282). 
Oaxlepec, Mexico: International Group for the Psychology of Mathematics Education.

Maratsos, M.P. (1973). Decrease in the understanding of the word “big” in preschool children. 
Child De�elopment, ��, 747-752.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

21� MATHEMATICS LEARNING IN EARLY CHILDHOOD

Miller, K.F. (1984). Child as the measurer of all things: Measurement procedures and the 
development of quantitative concepts. In C. Sophian (Ed.), Origins of Cogniti�e Skills: 
The Eighteenth Annual Carnegie Symposium on Cognition (pp. 193-228). Hillsdale, 
NJ: Erlbaum.

Miller, K.F. (1989). Measurement as a tool of thought: The role of measuring procedures 
in children’s understanding of quantitative invariance. De�elopmental Psychology, 25, 
589-600.

Mix, K.S., Huttenlocher, J., and Levine, S.C. (2002). Quantitati�e De�elopment in Infancy 
and Early Childhood. New York: Oxford University Press.

Mullet, E., and Paques, P. (1991). The height + width = area of a rectangle rule in five-year-
olds: Effects of stimulus distribution and graduation of the response scale. Journal of 
Experimental Child Psychology, 52(3), 336-343.

Mulligan, J., Prescott, A., and Mitchelmore, M.C. (2004). Children’s development of structure 
in early mathematics. In M.J. Høines and A.B. Fuglestad (Eds.), Proceedings of the 2�th 
Conference of the International Group for the Psychology in Mathematics Education 
(vol. 3, pp. 393-401). Bergen, Norway: Bergen University College.

Mullis, I.V.S., Martin, M.O., Beaton, A.E., Gonzalez, E.J., Kelly, D.L., and Smith, T.A. (1997). 
Mathematics Achie�ement in the Primary School Years: IEA’s Third International Math-
ematics and Science Study (TIMSS). Chestnut Hill, MA: Center for the Study of Testing, 
Evaluation, and Educational Policy, Boston College.

Murphy, C.M., and Wood, D.J. (1981). Learning from pictures: The use of pictorial informa-
tion by young children. Journal of Experimental Child Psychology, �2, 279-297.

National Council of Teachers of Mathematics. (1989). Curriculum and E�aluation Standards 
for School Mathematics. Reston, VA: Author.

National Mathematics Advisory Panel. (2008). Foundations for Success: The Final Report of 
the National Mathematics Ad�isory Panel. Washington, DC: U.S. Department of Educa-
tion. Available: http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf 
[accessed August 2008]. 

Newcombe, N.S., and Huttenlocher, J. (2000). Making Space: The De�elopment of Spatial 
Representation and Reasoning. Cambridge, MA: MIT Press.

Newcombe, N., and Sanderson, H.L. (1993). The Relation Between Preschoolers’ E�ery-
day Acti�ities and Spatial Ability. New Orleans, LA: Society for Research in Child 
Development.

Newcombe, N.S., Huttenlocher, J., and Learmonth, A. (1999). Infants’ coding of location in 
continuous space. Infant Beha�ior and De�elopment, 22, 483-510.

Nührenbörger, M. (2001). Insights into children’s ruler concepts—Grade-2 students’ con-
ceptions and knowledge of length measurement and paths of development. In M.V.D. 
Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group 
for the Psychology in Mathematics Education (vol. 3, pp. 447-454). Utrecht, The Neth-
erlands: Freudenthal Institute.

Nunes, T., and Bryant, P. (1996). Children Doing Mathematics. Cambridge, MA: Blackwell.
Nunes, T., Light, P., and Mason, J.H. (1993). Tools for thought: The measurement of length 

and area. Learning and Instruction, �, 39-54.
Outhred, L.N., and Mitchelmore, M.C. (1992). Representation of area: A pictorial perspec-

tive. In W. Geeslin and K. Graham (Eds.), Proceedings of the Sixteenth Psychology in 
Mathematics Education Conference (vol. II, pp. 194-201). Durham, NH: Program Com-
mittee of the Sixteenth Psychology in Mathematics Education Conference.

Palmer, S.E. (1989). Reference frames in the perception of shape and orientation. In B.E. 
Shepp and S. Ballesteros (Eds.), Object Perception: Structure and Process (pp. 121-163). 
Hillsdale, NJ: Erlbaum.

Petitto, A.L. (1990). Development of number line and measurement concepts. Cognition and 
Instruction, �, 55-78.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

PATHS FOR GEOMETRY, SPATIAL THINKING, AND MEASUREMENT 21�

Piaget, J., and Inhelder, B. (1967). The Child’s Conception of Space. (F.J. Langdon and J.L. 
Lunzer, Trans.). New York: W.W. Norton.

Piaget, J., and Inhelder, B. (1971). Mental Imagery in the Child. London, England: Routledge 
and Kegan Paul.

Piaget, J., Inhelder, B., and Szeminska, A. (1960). The Child’s Conception of Geometry. Lon-
don, England: Routledge and Kegan Paul.

Plumert, J.M., and Nichols-Whitehead, P. (1996). Parental scaffolding of young children’s 
spatial communication. De�elopmental Psychology, �2(3), 523-532.

Prigge, G.R. (1978). The differential effects of the use of manipulative aids on the learning of 
geometric concepts by elementary school children. Journal for Research in Mathematics 
Education, �, 361-367.

Raven, K.E., and Gelman, S.A. (1984). Rule usage in children’s understanding of “big” and 
“little.” Child De�elopment, 55, 2141-2150.

Razel, M., and Eylon, B.-S. (1990). Development of visual cognition: Transfer effects of the 
Agam program. Journal of Applied De�elopmental Psychology, 11, 459-485.

Reynolds, A., and Wheatley, G.H. (1996). Elementary students’ construction and coordina-
tion of units in an area setting. Journal for Research in Mathematics Education, 2�(5), 
564-581.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental 
Psychology: General, 10�, 192-233.

Rosser, R.A., Horan, P.F., Mattson, S.L., and Mazzeo, J. (1984). Comprehension of Euclidean 
space in young children: The early emergence of understanding and its limits. Genetic 
Psychology Monographs, 110, 21-41.

Rulence-Paques, P., and Mullet, E. (1998). Area judgment from width and height information: 
The case of the rectangle. Journal of Experimental Child Psychology, 6�(1), 22-48.

Russell, J. (1975). The interpretation of conservation instructions by five-year-old children. 
Journal of Child Psychology and Psychiatry, 16, 233-244.

Sales, C. (1994). A Constructi�ist Instructional Project on De�eloping Geometric Problem 
Sol�ing Abilities Using Pattern Blocks and Tangrams with Young Children. Unpublished 
Masters, University of Northern Iowa, Cedar Falls.

Sarama, J., and Clements, D.H. (2002). Building blocks for young children’s mathematical 
development. Journal of Educational Computing Research, 2�(1 and 2), 93-110.

Sarama, J., Clements, D.H., and Vukelic, E.B. (1996). The role of a computer manipulative in 
fostering specific psychological/mathematical processes. In E. Jakubowski, D. Watkins, 
and H. Biske (Eds.), Proceedings of the 1�th Annual Meeting of the North America 
Chapter of the International Group for the Psychology of Mathematics Education 
(vol. 2, pp. 567-572). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, 
and Environmental Education.

Semrud-Clikeman, M., and Hynd, G.W. (1990). Right hemispheric dysfunction in nonverbal 
learning disabilities: Social, academic, and adaptive functioning in adults and children. 
Psychological Bulletin, 10�, 196-209.

Sena, R., and Smith, L.B. (1990). New evidence on the development of the word big. Child 
De�elopment, 61, 1034-1052.

Seo, K.-H., and Ginsburg, H.P. (2004). What is developmentally appropriate in early child-
hood mathematics education? In D.H. Clements, J. Sarama, and A.-M. DiBiase (Eds.), 
Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics 
Education (pp. 91-104). Mahwah, NJ: Erlbaum.

Share, D.L., Moffitt, T.E., and Silva, P.A. (1988). Factors associated with arithmetic and 
reading disabilities and specific arithmetic disability. Journal of Learning Disabilities, 
21, 313-320.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

220 MATHEMATICS LEARNING IN EARLY CHILDHOOD

Shepard, R.N. (1978). Externalization of mental images and the act of creation. In B.S. 
 Randhawa and W.E. Coffman (Eds.), Visual Learning, Thinking and Communication. 
New York: Academic Press.

Shepard, R.N., and Cooper, L.A. (1982). Mental Images and Their Transformations. Cam-
bridge, MA: MIT Press.

Shusterman, A., and Spelke, E. (2004). Investigations in the development of spatial reasoning: 
Core knowledge and adult competence. In P. Carruthers, S. Laurence, and S. Stich (Eds.), 
The Innate Mind: Structure and Contents. New York: Oxford University Press.

Silverman, I.W., York, K., and Zuidema, N. (1984). Area-matching strategies used by young 
children. Journal of Experimental Child Psychology, ��, 464-474.

Smith, I. (1964). Spatial Ability. San Diego, CA: Knapp.
Sophian, C. (2002). Learning about what fits: Preschool children’s reasoning about effects of 

object size. Journal for Research in Mathematics Education, ��, 290-302.
Sophian, C., and Kailihiwa, C. (1998). Units of counting: Developmental changes. Cogniti�e 

De�elopment, 1�, 561-585.
Sowell, E.J. (1989). Effects of manipulative materials in mathematics instruction. Journal for 

Research in Mathematics Education, 20, 498-505.
Spiers, P.A. (1987). Alcalculia revisited: Current issues. In G. Deloche and X. Seron (Eds.), 

Mathematical Disabilities: A Cogniti�e Neuropyschological Perspecti�e. Hillsdale, NJ: 
Erlbaum.

Spitler, M.E., Sarama, J., and Clements, D.H. (2003). A Preschooler’s Understanding of a 
Triangle: A Case Study. Paper presented at the 81st Annual Meeting of the National 
Council of Teachers of Mathematics.

Starkey, P., Klein, A., Chang, I., Qi, D., Lijuan, P., and Yang, Z. (1999, April). En�ironmental 
Supports for Young Children’s Mathematical De�elopment in China and the United 
States. Paper presented at the Society for Research in Child Development, Albuquerque, 
NM.

Starkey, P., Klein, A., and Wakeley, A. (2004). Enhancing young children’s mathematical 
knowledge through a pre-kindergarten mathematics intervention. Early Childhood Re-
search Quarterly, 1�, 99-120.

Starkey, P., Klein, A., Sarama, J., and Clements, D.H. (2006). Preschool Curriculum E�alua-
tion Research. Paper presented at the American Educational Research Association.

Steffe, L.P. (1991). Operations that generate quantity. Learning and Indi�idual Differences, 
�, 61-82.

Steffe, L.P., and Cobb, P. (1988). Construction of Arithmetical Meanings and Strategies. New 
York: Springer-Verlag.

Stephan, M., Bowers, J., Cobb, P., and Gravemeijer, K.P.E. (2003). Supporting Students’ De-
�elopment of Measuring Conceptions: Analyzing Students’ Learning in Social Context 
(vol. 12). Reston, VA: National Council of Teachers of Mathematics.

Stevenson, H.W., and McBee, G. (1958). The learning of object and pattern discrimination by 
children. Journal of Comparati�e and Psychological Psychology, 51, 752-754.

Stevenson, H.W., Lee, S.-Y., and Stigler, J.W. (1986). Mathematics achievement of Chinese, 
Japanese, and American children. Science, 2�1, 693-699.

Stewart, R., Leeson, N., and Wright, R.J. (1997). Links between early arithmetical knowledge 
and early space and measurement knowledge: An exploratory study. In F. Biddulph and 
K. Carr (Eds.), Proceedings of the Twentieth Annual Conference of the Mathematics 
Education Research Group of Australasia (vol. 2, pp. 477-484). Hamilton, New Zea-
land: MERGA.

Stigler, J.W., Lee, S.-Y., and Stevenson, H.W. (1990). Mathematical Knowledge of Japanese, 
Chinese, and American Elementary School Children. Reston, VA: National Council of 
Teachers of Mathematics.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

PATHS FOR GEOMETRY, SPATIAL THINKING, AND MEASUREMENT 221

Swaminathan, S., Clements, D.H., and Schrier, D. (1995). The Agam Curriculum in Kinder-
garten Classes: Effects and Processes. Buffalo: University of Buffalo, State University of 
New York.

Tasuoka, K., Corter, J.E., and Tatsuoka, C. (2004). Patterns of diagnosed mathematical 
content and process skills in TIMSS-R across a sample of 20 countries. American Edu-
cational Research Journal, �1, 901-926.

Thomas, B. (1982). An Abstract of Kindergarten Teachers’ Elicitation and Utilization of 
Children’s Prior Knowledge in the Teaching of Shape Concepts: Unpublished manuscript, 
School of Education, Health, Nursing, and Arts Professions, New York University.

Usiskin, Z. (1997, October). The implications of geometry for all. Journal of Mathematics 
Education Leadership, 1(3), 5-14. Available: http://ncsmonline.org/NCSMPublications/
1997journals.html#oct97mel [accessed October 2008].

Uttal, D.H., and Wellman, H.M. (1989). Young children’s representation of spatial informa-
tion acquired from maps. De�elopmental Psychology, 25, 128-138.

van Hiele, P.M. (1986). Structure and Insight: A Theory of Mathematics Education. Orlando, 
FL: Academic Press.

Vinner, S., and Hershkowitz, R. (1980). Concept images and common cognitive paths in the 
development of some simple geometrical concepts. In R. Karplus (Ed.), Proceedings of 
the Fourth International Conference for the Psychology of Mathematics Education (pp. 
177-184). Berkeley: Lawrence Hall of Science, University of California.

Vygotsky, L.S. (1934/1986). Thought and Language. Cambridge, MA: MIT Press.
Wang, R.F., and Spelke, E.S. (2002). Human spatial representation: Insights from animals. 

Trends in Cogniti�e Sciences, 6, 376-382.
Wheatley, G.H. (1990). Spatial sense and mathematics learning. Arithmetic Teacher, ��(6), 

10-11.
Wheatley, G.H., Brown, D.L., and Solano, A. (1994). Long-term relationship between spatial 

ability and mathematical knowledge. In D. Kirshner (Ed.), Proceedings of the Sixteenth 
Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (vol. 1, pp. 225-231). Baton Rouge: Louisiana 
State University.

Wolf, Y. (1995). Estimation of Euclidian quantity by 5- and 6-year-old children: Facilitating a 
multiplication rule. Journal of Experimental Child Psychology, 5�, 49-75.

Yackel, E., and Wheatley, G.H. (1990). Promoting visual imagery in young pupils. Arithmetic 
Teacher, ��(6), 52-58.

Yuzawa, M., Bart, W.M., Kinne, L.J., Sukemune, S., and Kataoka, M. (1999). The effects of 
“origami” practice on size comparison strategy among young Japanese and American 
children. Journal of Research in Childhood Education, 1�(2), 133-143.

Yuzawa, M., Bart, W.M., and Yuzawa, M. (2000). Development of the ability to judge relative 
areas: Role of the procedure of placing one object on another. Cogniti�e De�elopment, 
15, 135-152.

Zykova, V.I. (1969). Operating with concepts when solving geometry problems. In J. Kilpatrick 
and I. Wirszup (Eds.), So�iet Studies in the Psychology of Learning and Teaching Math-
ematics (vol. 1, pp. 93-148). Chicago: University of Chicago.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

Part III

Contexts for Teaching and Learning



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

225

7

Standards, Curriculum, 
Instruction, and Assessment

In this chapter, we address the topic of effective mathematics curricu-
lum and teaching—what is known about how teachers can effectively sup-
port children’s learning of important foundational mathematics content. We 
begin the chapter with a description and analysis of current state standards 
for early learning. Standards are intended to influence the development of 
curriculum and assessment tools, and therefore they have the potential to 
serve as a bridge between what research says about children’s learning and 
the kinds of teaching and learning that actually occur.

Next, the chapter provides an overview about the state of mathematics 
teaching and learning experiences in early childhood settings and reviews 
the literature on effective practices for teaching young children mathemat-
ics. Following this is a discussion of formative assessment, an essential and 
often overlooked element of effective instruction. The chapter concludes 
with a discussion of research on effective curricula.

DEFINITIONS

To enhance understanding of the content of this chapter, we first define 
some of the most frequently used early childhood education terminology.

Teacher-Initiated and Child-Initiated Experiences

Early childhood practices are often described as either teacher-initiated 
or child-initiated. Teacher-initiated or teacher-guided means that teachers 
plan and implement experiences in which they provide explicit information, 
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model or demonstrate skills, and use other teaching strategies in which they 
take the lead. Teacher-initiated learning experiences are determined by the 
teacher’s goals and direction, but they should also reflect children’s active 
engagement (Epstein, 2007). Ideally, teacher-initiated instruction actively 
involves children. Indeed, when appropriately supportive and focused, 
teacher-initiated instruction can lead to significant learning gains (French 
and Song, 1998; Howes et al., 2008). In practice, however, most teacher-
initiated instruction is associated with the passive engagement of children 
(Pianta et al., 2005).

By contrast, child-initiated or child-guided means that children acquire 
knowledge and skills through their own exploration and through interac-
tions with objects and with peers (Epstein, 2007, p. 2). Child-initiated expe-
rience emanates primarily from children’s interests and actions with support 
from teachers. For child-initiated learning to occur, teachers organize the 
environment and materials and provide the learning opportunities from 
which children make choices (Epstein, 2007). Teachers thoughtfully observe 
children during child-initiated activity, gauging their interactions and the 
provision of new materials, as well as reorganization of the environment, 
to support their continued learning and development.

During optimal child-initiated experience, teachers are not passive, nor 
are children entirely in control—although this ideal is not always realized 
in practice. For example, classroom observational research reveals that 
teachers tend to spend little time with children during free play (Seo and 
Ginsburg, 2004), or they focus their interactions on behavior management 
rather than on helping children learn (Dickinson and Tabors, 2001; Kontos, 
1999).

Instruction and Intentional Teaching

In early childhood education, the term instruction is most often used to 
mean “direct instruction,” implying that teachers are entirely in control and 
children are passive recipients of information. The term is also used pejo-
ratively to refer to drill and practice on isolated skills. Direct instruction is 
more accurately defined as situations in which teachers give information or 
present mathematics content directly to children. The National Mathemat-
ics Advisory Panel (2008) uses the term explicit instruction to refer to the 
many ways that teachers can intentionally structure children’s experiences 
so that they support learning in mathematics.

Throughout the day and across various contexts—whole group, small 
group, centers, play, and routines—teachers need to be active and draw on 
a repertoire of effective teaching strategies. This skill in adapting teaching 
to the content, type of learning experience, and individual child with a 
clear learning target as a goal is called intentional teaching (Epstein, 2007; 
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National Association for the Education of Young Children, 1997). To be 
effective, intentional teaching requires that teachers use formative assess-
ment to determine where children are in relation to the learning goal and 
to provide the right kind and amount of support for them to continue to 
make progress. Intentional teaching is useful to get beyond the dichoto-
mies that arise when teaching is characterized as either teacher-directed or 
child-initiated.

Integrated and Focused Curriculum

Early childhood curriculum is often integrated across content domains 
or subject matter disciplines. Integration is the blending together of two 
or more content areas in one activity or learning experience (Schickedanz, 
2008). The purpose of an integrated curriculum is to make content mean-
ingful and accessible to young children. Integration also enables more 
content to be covered during the limited school day.

Integration typically occurs in two ways. One approach is to add a 
mathematics content goal to a storybook reading. In this situation, lan-
guage and literacy goals related to storybook reading are primary, and 
mathematics learning is secondary. Another way of integrating curriculum 
is to use a broad topic of study, a theme (such as animals or plants), or a 
project of interest to children through which mathematics content goals 
are addressed. Projects are extended investigations into a topic that intel-
lectually engages and interests children, such as how to create a garden 
or build a house (Katz and Chard, 1989). In both of these approaches to 
integration, mathematics learning is a secondary objective, rather than the 
primary focus of attention. In this report, we use both integrated learning 
experience and secondary focus on mathematics (which some studies have 
referred to as embedded mathematics) to reflect the teaching/exposure to 
mathematics content as an ancillary activity.

By contrast, focused curriculum or primary focus on mathematics 
refers to experiences in which mathematics is the major learning goal. A 
focused mathematics curriculum should also be meaningful and connect to 
children’s interests and prior knowledge. In this report, we use the terms, 
“primary focus on mathematics” and “focused mathematics time” to refer 
to dedicated time for a learning experience with mathematics as the primary 
goal.

STANDARDS FOR CHILDREN’S MATHEMATICS LEARNING

State standards for students’ learning have had an increasingly impor-
tant role in education over at least the past decade, particularly in K-12 
education. More recently, standards have begun to play a role in early 
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childhood education as well. Standards have great potential for shaping 
instruction, curricula, and assessment; however, the impact of standards 
on learning depends heavily on the content and specific learning goals laid 
out in them.

The number of states with published early learning standards has 
grown over the past eight years from 27 in 2002 to 49 as of 2008. To 
inform their early learning standards in mathematics, states have used a va-
riety of National Council of Teachers of Mathematics (NCTM) resources, 
including Principles and Standards for School Mathematics (2000) (14 
states) and Early Childhood Mathematics: Promoting Good Beginnings, 
issued by NCTM and National Association for the Education of Young 
Children (NAEYC). Engaging Young Children in Mathematics (2004) is 
also a widely recognized guide for state early learning standards.

Curriculum Focal Points (National Council of Teachers of Mathemat-
ics, 2006), the most recent set of guidelines provided by NCTM, was 
developed after most states had already established their standards. The 
Curriculum Focal Points provides guidance about the most significant math-
ematical concepts and skills (i.e., number and operations, geometry and 
measurement) that should be addressed during children’s early education. 
Curriculum Focal Points also has a clear emphasis on the PSSM process 
standards, which are essential for meaningful and substantive mathematics 
learning. The process strands of communication, reasoning, representation, 
connections, and particularly problem solving allow children to understand 
their mathematics learning as a coherent and connected body of knowledge 
(National Council of Teachers of Mathematics, 2006). Curriculum Focal 
Points does not, however, provide the kind of in-depth coverage of what 
children should know and can do that this report does.

In order to gain a more systematic understanding of the content of 
states’ mathematics standards, the committee commissioned two content 
analyses of current standards for young children: one at the prekindergarten 
level (here termed “early learning standards”) and one at the kindergarten 
level (Reys, Chval, and Switzer, 2008; Scott-Little, 2008).

Early Learning Standards

Many states developed early learning standards to improve classroom 
instruction and professional development; they also serve as a component 
of accountability systems. The age levels addressed in the standards docu-
ments vary across states. In 17 states the standards targeted children ages 3 
to 5, 12 states targeted 3- and 4-year-olds, and 11 states targeted children 
finishing prekindergarten or starting kindergarten.

State-funded prekindergarten programs are the most common target 
audience for the early learning standards (42 states), which are usually 
required to implement the standards (39 states) (Scott-Little et al., 2007). 
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Currently, 17 states have developed monitoring systems to ensure that stan-
dards are being implemented, and 4 others are in the process of developing 
such a system. States also report that they intend for the early learning 
standards to be used in child care (39 states), Head Start (38 states), the 
Individuals with Disabilities Education Act (26 states), and Even Start (27 
states) programs, although the use of the standards in these programs is 
typically voluntary.

For the early learning standards it was possible to evaluate how much 
emphasis each state has given to mathematics across all of the standards 
as a whole. On average, states devoted 15 percent of the total number of 
early learning standards to mathematics, although there was wide variation 
across states (from a low in New Mexico of only 4 percent to a high in 
Colorado of 54 percent).

In the content analysis of the mathematics early learning standards 
(Scott-Little, 2008), each standard was first coded into 1 of the 10 math-
ematics content and process areas in the PSSM. These categories include the 
three content areas emphasized in this report and in the Curriculum Focal 
Points—number and operations and geometry and measurement. After 
the mathematics standards items from a state’s document were coded, the 
total number of items in each area was summed. Because the total number 
of items varied from state to state, the total for each area was divided by 
the total number of mathematics items to produce a percentage that was 
comparable across documents. In effect, the percentage represents the rela-
tive emphasis given to each area of mathematics. Table 7-1 presents these 
results.

TABLE 7-1 Percentages of States Early Learning Mathematics Standards 
That Fall in Each of the PSSM Areas

PSSM Area Mean SD Min. Max.

Content
Numbers and operations 32.3 9.8 9 50
Algebra 19.0 8.8 0 50
Geometry 17.8 7.9 0 44
Measurement 15.8 8.7 0 50
Data analysis 5.3 5.8 0 17

Process
Problem solving 3.7 6.2 0 25
Communication 1.4 3.6 0 4
Reasoning 1.3 3.1 0 13
Representation 0.6 1.8 0 11
Connections 0.4 1.3 0 7
Other 2.5 3.4 0 15

NOTE: PSSM = Principles and Standards for School Mathematics, n = 49 states.
SOURCE: Scott-Little (2008).
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These data show a focus on the area of number and operations; on av-
erage, states devoted 32 percent of their mathematics standards to this area, 
and all states had at least some standards in this area. Geometry received 
less emphasis than number in the early learning standards (18 percent), and 
measurement accounted for 16 percent of standards in mathematics. In ad-
dition, there was much greater overall emphasis on the content standards 
areas than on the process standards areas (see Table 7-1).

A more detailed analysis was conducted of all standards in each of the 
three content areas that are the focus of this report (as well as the NCTM 
Curriculum Focal Points): (1) number and operations, (2) geometry, and (3) 
measurement. Table 7-2 provides the details of the results for each area.

In the area of number and operations, states have most often addressed 
number sense (an average of 24 percent of the number/operations stan-
dards); however, there is considerable variation among states—from 11 
states with no standards in this area, to 4 states for which number sense 
accounted for 100 percent of their number and operations standards. Three 
other core areas of number were relatively frequent—the number word list, 
1-to-1 counting correspondences, and written number symbols—and each 
is addressed by 11 to 14 percent of the standards. Cardinality and the three 
basic kinds of addition/subtraction situations received minimal attention.

In the geometry early learning standards, there was an emphasis on 
children’s knowledge of properties of shapes (40 percent) and spatial rea-
soning (25 percent) (e.g., knowledge related to spatial location and direc-
tion), although, again, there was considerable variability among states. 
Some important aspects of geometry for young children receive little atten-
tion, including transformation and visualization of shapes.

In the measurement standards, areas most often emphasized are mea-
surement of objects (34 percent of the standards), comparing objects (27 
percent), and understanding of concepts related to time (27 percent). Again 
there was variability—for example, 2 states had no measurement standards 
at all, and 15 states had no standard related to comparisons of objects and 
the concept of time (see Table 7-2).

Kindergarten Standards

The committee also commissioned an analysis of the 10 states with the 
largest student populations that publish kindergarten-specific mathematics 
standards: California, Florida, Georgia, Michigan, New Jersey, New York, 
North Carolina, Ohio, Texas, and Virginia (Reys, Chval, and Switzer, 
2008). These states were selected for analysis because they represent ap-
proximately 50 percent of the U.S. school population and therefore influ-
ence the intended curriculum for a substantial population of students. Given 
their size, these 10 states are also likely to influence textbook development 
and materials that are produced by commercial curriculum publishers.
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The kindergarten learning standards for each state were coded into the 
five PSSM mathematical content areas or strands: (1) number and opera-
tion, (2) geometry, (3) measurement, (4) algebra, and (5) data analysis/
probability (Clements, 2004; National Council of Teachers of Mathematics, 
2000). Results allow an examination of which of these mathematical strands 
are emphasized across and within states. Relative emphasis devoted to each 
strand was calculated as a percentage of standards in that strand within the 
total number of mathematics standards.

TABLE 7-2 Classification of State Mathematics Early Learning Standards 
by Content Area and Focal Area

Content/Focal Area Mean% SD Minimum% Maximum%

Number and Operations
Number sense 24.1 26.6 0 100
1-to-1 correspondence 13.8 10.3 0 43
Number word list 13.1 10.2 0 50
Written number symbols 11.4 11.6 0 40
Perceptional comparisons 9.6 10.3 0 50
Combining/taking apart 7.3 9.6 0 33
Cardinality 5.4 7.2 0 25
Estimation 4.7 8.4 0 33
Change 3.9 7.9 0 33
Ordinal numbers 3.8 6.6 0 25
Counting comparisons 2.2 9.0 0 60
Additive comparisons 0.6 2.1 0 11
Place value 0.2 1.6 0 11

Geometry
Properties of shapes 39.6 17.9 0 100
Spatial reasoning 25.3 23.2 0 100
Analyzing and comparing shapes 13.3 15.8 0 67
Location and directionality 12.2 15.5 0 50
Composing/decomposing shapes 6.6 10.7 0 40
Symmetry 1.6 5.3 0 25
Transformation of shapes 1.5 6.0 0 33
Visualization of shapes 0.0 0.0 0 0

Measurement
Measurement of objects 33.9 25.3 0 100
Comparing objects 27.1 26.0 0 100
Time 26.9 23.3 0 100
Measurable attributes 12.7 16.0 0 50
Composing objects 0.0 0.0 0 0

NOTE: For number and operations n = 49 states; for geometry n = 48 as one state had no 
geometry standards; for measurement n = 47 as two states had no measurement standards. 
Percentages represent the number of a state’s standards in a focal area divided by the total 
number of standards in the content area (content areas are number and operation, geometry, 
and measurement).
SOURCE: Scott-Little (2008).
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There was considerable variability across the 10 states studied. The 
total number of mathematics standards varied widely, from 11 in Florida 
to 74 in Virginia (average number of standards was 29). Of the “total set” 
of 103 specific standards identified in the analysis, only 1 standard was 
common to all 10 states (extending a pattern) and another 3 standards were 
common to 9 states. Only 20 percent of the 103 standards were common 
to 6 or more states.

In kindergarten (as with the early learning standards), the greatest 
emphasis across all the mathematics standards is placed on number and 
operations—40 percent of a state’s mathematics standards on average (with 
a range from a low of 27 percent to a high of 56 percent among states). 
Geometry and measurement each receive less emphasis than number (19 
and 21 percent, respectively), although, again, variability is high (from 9 
to 45 percent across states for geometry and from 11 to 28 percent for 
measurement).

In the number strand, the heaviest emphasis is placed on counting. 
Areas of emphasis (meaning at least 6 of the 10 states had standards in this 
focal area) include counting objects, reading and writing numerals, identify-
ing ordinal numbers, comparing the relative size of groups of objects, and 
modeling and solving problems using addition and subtraction. Consistent 
with the theme of state variability, however, no single number/operations 
standard appeared in all 10 state documents.

In both geometry and measurement, few learning standards were com-
mon across the states; only 6 topics (of 43 total across geometry and 
measurement) appeared in the documents of 6 or more states. In geometry, 
these topics were identifying and naming two-dimensional (2-D) shapes and 
knowing the relative position of objects. In measurement, the most common 
topics were comparing the weight of objects; sort, compare, and/or order 
objects; compare length of objects; and know days of the week.

Taken together, the three focal areas emphasized by the committee 
(number, geometry, and measurement) account for 80 percent of the content 
of the kindergarten standards across the 10 states. However, many states 
also include some specific standards that would not be considered core or 
primary mathematics by the committee—such as knowing the names of 
the months, parts of the day, seasons, ordering events by time, comparing 
time, understanding the concept of time, identifying the time of everyday 
events to the nearest hour, and measurement of weight, capacity, and 
temperature.

Process strands were addressed quite differently by different states, 
so no systematic analyses could be done. Specifically, three states make 
no mention of process standards at the kindergarten level (Florida, North 
Carolina, and Virginia), and three other states include identification of 
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specific standards by process strand (Georgia, New York, and Texas). No-
tably, although these strands are specified for kindergarten, these process 
standards are very similar, if not identical, at each grade, K-8. Two states 
(Arizona and Massachusetts) provide a general description of process stan-
dards in the introductory material of their K-6 or K-8 document. These 
descriptions emphasize the importance of the process strands outlined 
in the PSSM (National Council of Teachers of Mathematics, 2000). The 
California and Ohio documents include process standards organized within 
one strand (“Mathematical Reasoning” in the California document and 
“Mathematical Process Standard” in the Ohio document) for each grade. 
The California document lists process standards that are common across 
kindergarten and Grade 1. Likewise, the Ohio document includes a list of 
process standards that are common to Grades K-2.

Summary

A total of 49 states have early learning standards in mathematics; on 
average, states devote the greatest emphasis to the area of number (32 
percent of the standards on average). Specific emphasis within the areas 
of number, geometry, and measurement showed considerable state-to-state 
variation. According to our analysis for the 10 largest states, the greatest 
emphasis in kindergarten is also placed on number (40 percent of the stan-
dards on average). However, there is also considerable variation in content 
of the specific standards across all of the areas. In fact, of the 103 total stan-
dards across the 10 states, 47 are unique to just 1 or 2 state documents.

A pattern of wide variation across states in emphasis given to math-
ematics as a whole and relative emphasis given to various topics in math-
ematics emerges from these analyses of standards. Thus, while some 
common topics could be identified, when taken as a whole, the state stan-
dards do not communicate a clear consensus about the most important 
mathematical ideas for young children to learn.

THE CLASSROOM CONTEXT

We begin with a description of the classroom context in which math-
ematics instruction takes place. We then focus specifically on what is known 
about mathematics teaching and learning practices in preschool and kinder-
garten classrooms—when it occurs, how often, and in what contexts.

Results from several large studies of prekindergarten (pre-K) and kin-
dergarten classrooms paint a detailed picture of how young children spend 
their time in these settings and the quality of their learning experiences. 
We draw particularly on two studies conducted by the National Center for 
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Early Development and Learning (NCEDL) and on the Early Childhood 
Longitudinal Study-Kindergarten1 (ECLS-K).

The NCEDL conducted two major studies of state-funded pre-K and 
kindergarten classrooms: the six-state Multi-State Study of Preschool (MS) 
and the five-state State-wide Early Education Programs (SWEEP) Study 
(Early et al., 2005). While neither of these studies included a nationally 
representative sample, as of 2001-2002, almost 80 percent of all children 
in the United States who were participating in state-funded prekindergarten 
were in one of these 11 states (Early et al., 2005). When combined, these 
two studies provide observational data on over 700 preschool and 800 kin-
dergarten classrooms across the United States and offer a unique window 
on children’s classroom experiences.

It is important to note that classrooms were included in these studies 
only if they received state pre-K funding, so the results are not representa-
tive of the larger segment of schooling opportunities for 4-year-olds. State-
funded pre-K classrooms are a small subset of early childhood classrooms, 
generally with greater funding and tighter regulation and monitoring, than 
the larger set of early childhood classrooms. The studies must be interpreted 
in this context.

In both studies, classrooms were observed using a variety of measures 
to capture the content and quality of learning opportunities and materials 
afforded to children, including the Early Childhood Environment Rating 
Scale (ECERS-R; Harms, Clifford, and Cryer, 1998), Classroom Assessment 
Scoring System (CLASS; Pianta, La Paro, and Hamre, 2008), and Emerging 
Academics’ Snapshot (Ritchie et al., 2001).2

How Children Spend Their Time in Prekindergarten and Kindergarten

Results from both of the NCEDL studies (the MS and the SWEEP) in-
dicate that children in state pre-K programs spend a great deal of time not 
engaged in any type of instructional activity. Using the Emerging Academics 
Snapshot, both NCEDL studies recorded the proportion of time spent in all 
major areas of curriculum, assessing the amount of time students spent in 

1 Material in this section is based on a paper prepared for the committee by Hamre et al. 
(2008), which included a review of the published literature related to these studies as well as 
some reanalysis of the data conducted for this report.

2 During pre-K, observation days lasted from the beginning of class until the end of class in 
part-day rooms and until nap in full-day rooms. In pre-K, observers stayed with the children 
all day, including lunch, outside time, and special activities. In kindergarten, the observations 
were slightly different because the days were generally longer. Snapshot and CLASS observa-
tions lasted the entire day, but no observations were made during lunch, recess, or nap. For this 
reason, pre-K and kindergarten Snapshot percentages of time spent are discussed separately. 
More information about these studies can be found on the NCEDL website (http://www.fpg.
unc.edu/~ncedl/) and in several published articles (Clifford et al., 2005; Howes et al., 2008; 
Pianta et al., 2005).
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reading, oral language and phonemic awareness activities, writing, math-
ematics, science, social studies, aesthetics, and fine and gross motor activi-
ties. Each area was broadly defined so that time spent in dramatic play, 
block areas, coloring with markers, talking with teachers about things out-
side school, and singing songs were included in one of these areas. During 
the preschool day, the average student spent 44 percent of the time engaged 
in none of these curriculum activities. Data from kindergarten classrooms 
revealed that the average student was not engaged in any instructional ac-
tivity in 39 percent of the observed intervals.

What were children doing during this noninstructional time? In pre-
school classrooms, much of the time (22 percent) was spent engaged in 
routine activities, such as transitioning, waiting in line, or washing hands. 
Some time (11 percent) was also spent in meals and snacks (Early et al., 
2005). Importantly, routine, meal, and snack times could be included as 
instructional time if, for example, teachers and children engaged in a con-
versation, sang a song, or played a number game during a transition. But 
few preschool or kindergarten teachers appeared to take advantage of the 
learning opportunities that arose during transitional periods or employed 
strategies for getting the most out of this time in the classroom.

Which types of instructional opportunities are young children exposed 
to most often? Of all content areas, young children spent more time in lan-
guage and literacy activities than any other—14 percent of the observed day 
in preschool and 28 percent of the observed day in kindergarten (La Paro 
et al., 2008). None of the other major areas occurred much more than 10 
percent, on average, in any given day. Pre-K children in the NCEDL studies 
were exposed to mathematics content in only 6 percent of the observations, 
and kindergarten children were exposed to mathematics an average of 11 
percent of the day.

Another relevant question concerns the use of various instructional 
contexts, such as free choice/center time or whole-group instruction. Data 
from the NCEDL studies suggest there is a major shift in the preferred in-
structional context from preschool to kindergarten. Children in preschool 
classrooms spent an average of 33 percent of the school day in free choice 
or center time, compared with only 6 percent of the day in kindergarten 
classrooms. Once in kindergarten, both whole-group instruction and indi-
vidual time, in which children work independently at desks, becomes much 
more frequent. Across kindergarten and preschool, teachers rarely made use 
of small-group instruction.

Quality of Teacher-Child Interactions in Preschool and Kindergarten

The NCEDL data also provide a window into the quality of teacher-
child interactions and instruction to which young children are exposed, 
using the CLASS Framework for Children’s Learning Opportunities in 
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Early Childhood and Elementary Classrooms (CLASS framework; Pianta, 
La Paro, and Hamre, 2007). The CLASS framework captures three broad 
domains of classroom interactions—emotional supports, classroom organi-
zation, and instructional supports—as well as more specific dimensions in 
each domain. The CLASS framework was derived from basic, theory-driven 
research on classroom environments and research on effective teaching 
practices, and it aligns well with a variety of conceptualizations of effec-
tive teaching and empirical evidence on effective practices (see Hamre and 
Pianta, 2007, for a more detailed discussion).

Emotional Supports in Preschool and Kindergarten

NCEDL results indicate that across preschool and kindergarten, chil-
dren, on average, experienced moderately positive interactions with teachers 
in moderately well-managed classrooms (La Paro et al., 2008). Approxi-
mately one-third of children in this study were in classrooms characterized 
by high-quality emotional supports in both pre-K and kindergarten.

Teachers’ emotional support may have direct links to students’ learn-
ing (e.g., Connor, Son, and Hindman, 2005), as well as indirect links in 
which emotional support fosters engagement, which in turn leads to greater 
achievement (Rimm-Kaufman, Early, and Cox, 2002). Children’s social and 
emotional functioning in the classroom is increasingly recognized as an 
indicator of school readiness (Blair, 2002; Denham and Weissberg, 2004; 
Raver, 2004) and a potential target for intervention (Greenberg, Weissberg, 
and O’Brien, 2003; Zins et al., 2004). Children who are more motivated 
and connected to others in the early years of schooling are much more likely 
to establish positive trajectories of development in both social and academic 
domains (Hamre and Pianta, 2001; Pianta, Steinberg, and Rollins, 1995; 
Silver et al., 2005). Furthermore, there is some evidence that emotional sup-
ports may be particularly important for supporting the academic develop-
ment of students with social and emotional difficulties (Hamre and Pianta, 
2005). Recent nonexperimental research in elementary classrooms suggests 
that there may be direct links between emotional supports and students’ 
mathematics knowledge (Pianta et al., 2008).

Classroom Organization and Management

Classrooms function best and provide the most opportunities to learn 
when students are well behaved, consistently have things to do, and are in-
terested and engaged in learning tasks (Pianta et al., 2005). In short, children 
are better regulated in well-regulated classroom environments. In the NCEDL 
studies, this dimension of classrooms was measured using the CLASS.

In general, the quality of classroom organization and management 
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in the early childhood classrooms observed in the NCEDL studies was 
moderately positive. The typical classroom was characterized by a mix of 
productive periods, with children engaged in learning, and other periods, 
in which significant behavior problems disrupted learning or teachers failed 
to actively engage children in learning opportunities.

Instructional Supports

Of greatest concern are results suggesting very low levels of instruc-
tional supports across pre-K and kindergarten, as measured by both the 
CLASS and ECERS-R. In the CLASS, instructional supports include the 
three dimensions of support for concept development, quality of feedback, 
and language modeling. Interactions between adults and children are the 
key mechanism through which these instructional supports are provided to 
children in the early years of schooling. A child gets more out of an activity 
if the teacher is either directly interacting with the child in an intentional 
way or if the child’s participation in the activity has been sufficiently sup-
ported by the teacher prior to the start of the activity, so that the child, in 
playing, is more intentional in the purpose of the activity (the section below 
called “Research on Effective Mathematics Pedagogy” is a more detailed 
discussion of instructional supports).

Mathematics Practices in U.S. Preschools and Kindergartens

Little is known about the math-specific learning opportunities that are 
provided to children in early childhood settings. This may reflect, in part, 
the focus on early literacy and language development that has consumed 
much of early childhood policy and research attention for the past decade. 
Although more recent attention has focused on early childhood mathe-
matics (Clements and Sarama, 2007a), there is not yet detailed, national-
level information on the typical mathematical practices to which children 
are exposed. In this section, we again draw on the NCEDL MS Study and 
on data from the nationally representative ECLS-K cohort. We begin with 
a more detailed analysis of observational data from pre-K classrooms in the 
NCEDL MS Study and end with a description of kindergarten teachers’ self-
reported mathematics practices from the ECLS-K. Although the ECLS-K is 
nationally representative, the information about mathematics instruction 
is limited.

Mathematics Instruction in Prekindergarten

The most relevant NCEDL MS data come from observations conducted 
during visits to pre-K classrooms in the fall and the spring. The average 
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amount of time focused on mathematics content in the pre-K classrooms 
was minimal (6.5 percent in the fall, and 6.7 percent in the spring).3

More detailed analysis of the actual activities that took place during 
this mathematics time suggests that, for about half of the time, mathemat-
ics content occurred during whole-group activities (49 percent in the fall 
and 48 percent in the spring). Free choice/center time was the second most 
common mathematics setting (31 and 29 percent in the fall and spring re-
spectively), with small group instruction third (11 and 12 percent).

Another important question is whether mathematics is taught alone or 
in conjunction with other content. Data indicate that mathematics content 
co-occurred with other academic content during the majority of the time 
(61 percent in the fall and 55 percent in the spring). About 20 percent of 
the time, when mathematics co-occurred with something else, it was with 
an art or music activity (aesthetics), and between 15 and 18 percent of the 
time it was with a fine motor activity. Other academic content occurred 
simultaneously with mathematics about 11 percent of the time for reading 
(a combination of being read to, prereading, and letter-sound), 13 percent 
for social studies, and 11 percent for science. These findings indicate that, 
when they do teach mathematics, early childhood education programs 
rely on integrated or embedded mathematics experiences a majority of the 
time, rather than including activities with a primary focus on mathematics. 
The selection of materials and activities such as puzzles, blocks, games, 
songs, and fingerplays seem to constitute mathematics for many teachers 
 (Clements and Sarama, 2007a).

Using the Emerging Academics Snapshot, researchers found that teach-
ers’ interactions with children during mathematics content were likely to 
be either encouraging or didactic in nature. Encouraging was coded when 
teachers provided feedback about effort and persistence, including praise, 
personal comments, and general statements that helped children stay en-
gaged in their work. Didactic was coded when teachers focused on giving 
instructions, asking questions with one correct answer, and engaging chil-
dren in instruction focused on mastering a discrete set of materials. Less 
often, teachers spent time scaffolding while delivering mathematics content. 
Scaffolding was coded when teachers showed an awareness of an individual 
child’s needs and responded in a manner that supported and expanded the 
child’s learning.

3 Note that math was coded when a child was verbally counting, counting with 1-to-1 
correspondence, skip counting, identifying written numerals, matching numbers to pictures, 
making graphs, playing counting games (e.g., dice, dominoes, Candyland, Chutes and Lad-
ders), keeping track of how many days until a special event, counting marbles in a jar, playing 
Concentration or Memory with numbers, working on mathematics worksheets, identifying 
shapes, talking about the properties of shapes (e.g., how many sides), finding shapes in the 
room, identifying same and different (e.g., big/little, biggest), sorting (by color, size, shape), 
discerning patterns (red, blue, red, blue), or measuring for cooking or size.
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To summarize, in the state-funded pre-K classrooms observed in the 
NCEDL MS Study, mathematics was often taught in conjunction with art, 
music, and fine motor activities, suggesting that perhaps teachers were 
integrating mathematics with activities that they assumed would heighten 
children’s engagement and were making use of manipulatives. However, 
the committee thinks that the integration of mathematics with other activi-
ties may or may not be effective in supporting children’s development of 
mathematics knowledge, depending on the integrity of, and emphasis on, 
the mathematical ideas. It is also evident that mathematics, like literacy, was 
often taught in a manner in which teachers focused on student performance 
of a discrete skill or display of factual knowledge. Children were less often 
exposed to instruction that was conversational, interactive, and focused on 
understanding and problem solving.

Mathematics Instruction in Kindergarten

The ECLS-K cohort is a nationally representative sample of 22,000 
students in approximately 1,000 classrooms across the United States. This 
cohort of students entered the study in 1998-1999 as they began kindergar-
ten and will be followed through eighth grade. The most relevant ECLS-K 
data for our purposes are items from a survey of kindergarten teachers who 
reported how often their students were exposed to classroom instruction in 
mathematics, including (1) broad exposure to mathematics, (2) instructional 
emphasis on specific mathematics concepts and skills, and (3) exposure to 
specific mathematics instructional strategies and activities.

The committee commissioned a reanalysis of these teacher survey items 
because existing published analyses did not provide sufficient detail on 
mathematics (Hamre et al., 2008a). For the purposes of our analysis, 
the items were organized conceptually according to the NCTM Content 
Standards (National Council of Teachers of Mathematics, 2000) into the 
 areas of number and operations, geometry, measurement, algebra, and data 
analysis and probability.

The vast majority of teachers (81 percent) indicated that mathematics 
instruction is a part of their daily classroom routine, with over half of the 
teachers (65 percent) reporting that they provide more than 30 minutes of 
mathematics instruction each day. Teachers also indicated the frequency 
with which they taught a list of 27 specific mathematics concepts and skills. 
By far, teachers reported concepts and skills associated with number and 
operations to be the most common emphasis of mathematics instruction. 
However, in contrast to the recommendations in this report for focusing 
on learning paths in a few key areas, concepts and skills associated with all 
of the NCTM standards were the emphasis of mathematics instruction to 
some extent in a given academic week.

Specific to number and operations, the most common concepts and 



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

2�0 MATHEMATICS LEARNING IN EARLY CHILDHOOD

skills teachers reported teaching were correspondence between number 
and quantity, writing all numbers between 1 and 10, and reading two-digit 
numbers—all of these were frequently (77, 55, and 52 percent, respectively) 
reported to be the emphasis of instruction three or more times per week.

Counting by 2s, 5s, and 10s was fairly common, with 44 percent of 
teachers reporting this to occur at least three times per week. Instruction 
was slightly less often focused on ordinal numbers (35 percent reported 
at least three times per week), adding single-digit numbers (40 percent), 
and subtracting single-digit numbers (28 percent). Research on children’s 
number and operations learning discussed in previous chapters suggests 
that such emphases are out of balance. For example, time dedicated to 
skip counting—especially if involving only verbal counting—might be bet-
ter used to address concepts, strategies, and skills related to addition and 
subtraction.

As for measurement concepts and skills, the most commonly endorsed 
items were identification of relative quantity (e.g., most, least, more, less), 
ordering objects by size or other properties, and sorting objects into sub-
groups according to a rule, all of which were reported to be the emphasis 
of instruction once a week or more for 56-76 percent of teachers. Measure-
ment concepts and skills received less frequent emphasis but still were re-
portedly the focus of instruction at least once a month for most classrooms, 
as were using measurement instruments accurately, telling time, estimating 
quantities, and recognizing the value of coins and currency.

Geometry, algebra, and data analysis/probability consisted of the fewest 
survey items. The lone geometry skill in the survey, recognizing and naming 
geometric shapes, was reported to be the emphasis of instruction once per 
week or more by more than 66 percent of teachers. Similarly, related to 
algebra, over two-thirds of teachers (72 percent) reported teaching copying, 
making, and extending a pattern at least once a week. Under data analysis 
and probability, over half of the teachers emphasized reading simple graphs 
once per week or more, while simple data collection and graphing was less 
often emphasized (54 percent reported doing this two to three times per 
month or less). The majority of teachers (59 percent) noted that estimating 
probability was a skill to be taught at a higher grade level.

Another set of survey items asked teachers about the extent to which 
they used various instructional activities or strategies. In numbers and 
operations, the most common math-related activity reported by teachers 
was verbal counting, which happened on a daily basis in more than 79 
percent of the kindergarten classrooms. Another relatively common activity 
involved use of counting manipulatives to learn basic operations, with 66 
percent of teachers reporting this to occur three or more times per week. 
The use of geometric manipulatives was also fairly common, with 45 per-
cent of teachers reporting their use three or more times a week. In contrast, 
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work with rulers, measuring cups, spoons, and other measuring instruments 
was fairly infrequent, with two-thirds of teachers (66 percent) reporting use 
of them three times per month or less.

Generalized teaching strategies and activities are defined as those that 
can apply to a variety of the NCTM mathematics standards. The most 
prominent generalized strategy was calendar-related activities, which oc-
curred on a daily basis in over 90 percent of the classrooms surveyed, this 
despite the fact that mathematics educators do not consider most calendar 
activities to be useful early childhood mathematics instruction and have 
serious questions about the efficacy of “doing the calendar” every day (see 
Box 7-1).

More than half of the teachers reported using the following strategies 
and activities twice a week or more: playing mathematics-related games, 
explaining how a mathematical problem is solved, doing mathematical 

BOX 7-1 
How Using the Calendar Does Not Emphasize 

Foundational Mathematics

	 Many	preschool	and	kindergarten	teachers	spend	time	each	day	on	the	cal-
endar,	in	part	because	they	think	it	is	an	efficient	way	to	teach	mathematics.	Al-
though	the	calendar	may	be	useful	in	helping	children	begin	to	understand	general	
concepts	of	 time,	such	as	“yesterday”	and	“today,”	or	plan	 for	 important	events,	
such	as	field	trips	or	visitors,	these	are	not	core	mathematical	concepts.	The	main	
problem	with	the	calendar	is	that	the	groups	of	seven	days	in	the	rows	of	a	calen-
dar	have	no	useful	mathematical	relationship	to	the	number	10,	the	building	block	
of	the	number	system.	Therefore,	the	calendar	is	not	useful	for	helping	students	
learn	the	base	10	patterns;	other	visual	and	conceptual	approaches	using	groups	
of	10	are	needed	because	these	patterns	of	groups	of	10	are	foundational.
	 Time	spent	on	the	calendar	would	be	better	used	on	more	effective	mathemat-
ics	teaching	and	learning	experiences.	“Doing	the	calendar”	is	not	a	substitute	for	
teaching	foundational	mathematics.

1 11 21 31 41 51 61 71 81 91 101 111
2 12 22 32 42 52 62 72 82 92 102 112
3 13 23 33 43 53 63 73 83 93 103 113
4 14 24 34 44 54 64 74 84 94 104 114
5 15 25 35 45 55 65 75 85 95 105 115
6 16 26 36 46 56 66 76 86 96 106 116
7 17 27 37 47 57 67 77 87 97 107 117
8 18 28 38 48 58 68 78 88 98 108 118
9 19 29 39 49 59 69 79 89 99 109 119

10 20 30 40 50 60 70 80 90 100 110 120
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worksheets, solving mathematical problems in small groups or with a 
partner, working on mathematical problems that reflect real-life situations, 
working in mixed achievement groups on mathematics activities, and using 
computers to learn mathematics. A somewhat different pattern was evident 
for using music to understand mathematics, using creative movement or 
creative drama to understand mathematical concepts, completion of math-
ematical problems on the chalkboard, and engaging in peer tutoring. A 
quarter or more of the teachers indicated that they never asked students to 
do these activities, whereas another quarter or more used these activities at 
least one to two times per week.

Mathematics Practices Across Di�erse Preschool Settings

Findings from the few smaller scale studies that examined mathematics 
in early childhood settings show a similar pattern. In one study, teachers in 
two states from a range of preschool settings, including family and group 
child care providers, were surveyed about their mathematics instruction 
(Sarama, 2002; Sarama and DiBiase, 2004). Most teachers reported using 
manipulatives (95 percent), number songs (74 percent), and games (71 
percent). Only 33 percent used software, and 16 percent reported using 
mathematical worksheets. Teachers reported a preference for children to ex-
plore mathematics activities and engage in free play rather than participate 
in large group lessons or do mathematical worksheets. The mathematics 
topics teachers reported were counting (67 percent), sorting (60 percent), 
numeral recognition (51 percent), patterning (46 percent), number concepts 
(34 percent), spatial relations (32 percent), making shapes (16 percent), 
and measuring (14 percent). The least popular topics were geometry and 
measurement.

In an observational study of New Jersey preschools, teachers were 
found to provide little support for children’s mathematical skill develop-
ment and seldom used mathematics terminology (Frede et al., 2007). Of 
particular interest is that over 40 percent of the classrooms in this study 
were rated as good to excellent quality on the ECERS-R measure of the en-
vironmental quality of early childhood programs. Apparently, mathematics 
teaching and learning is relatively rare even in classrooms that are otherwise 
judged to be of high quality.

RESEARCH ON EFFECTIVE MATHEMATICS INSTRUCTION

The majority of research that is focused specifically on mathematics 
taught in early childhood examines the effectiveness of a particular math-
ematics curriculum (e.g., Clements and Sarama, 2008a; Sophian, 2004; 
Starkey, Klein, and Wakeley, 2004). Although much of this work meets very 
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high empirical standards, it is often difficult to derive information about 
specific types of effective instructional practices from general information 
on whether or not a curriculum is successful. Nevertheless, this research 
base does provide some guidance on effective mathematics instruction. 
(Curriculum research is discussed later in the chapter.)

There is also a large body of research on effective instruction in early 
childhood that is not specific to mathematics. The general principles of ef-
fective instruction that emerge from this research can and should be taken 
into consideration when designing mathematics instruction for young chil-
dren. Both of these bodies of research are briefly reviewed below. Taken 
together, they provide guidance on effective instruction, although further 
research on strategies specific to mathematics is needed.

The large body of research on effective instruction informed the de-
velopment of the CLASS system for observation described briefly in the 
previous section. Since the domain of the CLASS most closely associated 
with the development of mathematics knowledge and skill is instructional 
supports, we begin with a discussion of various kinds of instructional sup-
ports as defined in the CLASS. We then move to discussion of other aspects 
of instruction that are important for supporting learning in mathematics.

Instructional Supports

The theoretical foundation for the CLASS conceptualization of instruc-
tional supports comes primarily from research on children’s cognitive and 
language development (e.g., Catts et al., 2002; Fujiki, Brinton, and Clarke, 
2002; Romberg, Carpenter, and Dremlock, 2005; Taylor et al., 2003; 
Vygotsky, 1991; Wharton-McDonald and Pressley, 1998). This literature 
highlights the distinction between simply learning facts and gaining usable 
knowledge, which is built on learning how facts are interconnected, orga-
nized, and conditioned on one another (Mayer, 2002; National Research 
Council, 1999). A child’s cognitive and language development is contingent 
on the opportunities adults provide to express existing skills and scaffold 
more complex ones (Davis and Miyake, 2004; Skibbe, Behnke, and Justice, 
2004; Vygotsky, 1991). The development of metacognitive skills, including 
children’s awareness and understanding of their own thinking processes as 
well as their executive function skills, are also critical to their academic de-
velopment (Blair, 2002; Veenman, Kok, and Blote, 2005; Williams, Blythe, 
and White, 2002).

The CLASS assessment system has been validated, both in terms of its 
factor structure (Hamre et al., 2008b) and in relation to preschool children’s 
language, literacy, and mathematics knowledge and social and emotional 
development (Burchinal et al., 2008; Howes et al., 2008; Mashburn et al., 
2008). Children in classrooms that score higher on the instructional dimen-
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sions of concept development and quality of feedback, as measured by the 
CLASS, display greater gains in mathematics knowledge over the course of 
the year, although the effect sizes are small (between .10 and .20; Mashburn 
et al., 2008). These two dimensions of instructional support are discussed 
in greater detail below.

Promoting Conceptual De�elopment

Concept development describes the instructional behaviors, conversa-
tions, and activities that teachers use to help stimulate students’ higher 
order thinking skills (Pianta et al., 2007), which refers not only to the 
acquisition of knowledge, but also to the ability to access and apply this 
knowledge in new situations (Mayer, 2002). The four key elements of high-
quality concept development are (1) analysis and reasoning, (2) creating, 
(3) integration, and (4) connections to the real world.

In classrooms that fall at the high end of concept development, teachers 
not only plan activities in ways that will stimulate higher order thinking, 
but also they take advantage of the moment-to-moment opportunities in 
their daily interactions to push children toward deeper thinking. In con-
trast, classrooms that are low on conceptual development lack instructional 
opportunities or focus instruction solely on remembering facts or on simple 
tasks that require only recognition or recall.

Pro�iding Scaffolding and Feedback

In order for students to get the most benefit from instructional opportu-
nities, they need feedback about their learning. Feedback refers to a broad 
range of interactions through which the teacher provides some information 
back to the students about their performance or effort. There are five major 
types of feedback interactions described in the CLASS: (1) scaffolding, 
(2) feedback loops, (3) prompting of thought processes, (4) provision of 
information, and (5) encouragement or affirmation. Feedback is a key ele-
ment of formative assessment, which is discussed in greater detail later in 
this chapter.

Scaffolding. Teachers scaffold children’s learning by providing hints and as-
sistance that enable them to perform at a higher level than they might be able 
to do on their own. This may occur during a whole-group or small-group 
discussion or individually during center time or children’s play (scaffolding is 
also discussed in the section on formative assessment in this chapter).

Feedback loops. Effective feedback is also characterized by sustained 
exchanges with a child (or group of children), leading them to a better or 



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

STANDARDS, CURRICULUM, INSTRUCTION, AND ASSESSMENT 2�5

deeper understanding of a particular idea. This is in contrast to a teacher 
who might give a single hint to a child but then move on, even if the child 
does not seem to understand.

Prompting thought processes. This feedback strategy asks students to ex-
plain their thinking or actions. Prompting thought processes helps to identify 
children who may have completed an activity or answered a question cor-
rectly, but who cannot yet clearly articulate their reasoning. By having a child 
articulate his or her thought process, the teacher discovers erroneous thinking 
and can intervene. This learning opportunity is in contrast to one in which 
the teacher just tells the child that he or she was correct or incorrect.

Providing information. In the context of instructional interactions, chil-
dren often give the wrong answer or action. Each instance provides an 
opportunity for effective feedback by expanding on children’s answers and 
actions, clarifying incorrect answers, or providing very specific information 
about the correct answer. These are all in contrast to a teacher who simply 
tells students they are wrong.

Encouragement and affirmation. Another form of feedback consists of 
strategies that can motivate children to sustain their efforts and engage-
ment. Simple recognition statements, such as “You are working really hard 
on that puzzle” reinforce students’ effort and encourage persistence. This 
may be especially important in the area of mathematics, in which older 
children in the United States have been found to assume that mathematics 
achievement is a product of ability rather than effort (National Mathemat-
ics Advisory Panel, 2008). Young children may need help to learn that effort 
leads to improved results in learning mathematics.

The Importance of Math Talk

In a mathematics context, teachers’ use of language can facilitate con-
nections between numbers, words, and ideas. In an elegant demonstration 
of the importance of mathematical language for young children, Klibanoff 
and colleagues (2006) showed that children exposed to more math talk in 
their preschool classrooms displayed greater gains in mathematical knowl-
edge from October to April. The authors transcribed an hour of teachers’ 
utterances, including circle time, and coded the transcripts for the number 
of mathematical inputs in the following categories: counting, cardinality, 
equivalence, nonequivalence, number symbols, conventional nominative 
(as in naming an address or phone number), ordering, calculation, and 
placeholding. There was a wide range of mathematical inputs among the 
26 classrooms (a range from 1 to 104, with an average of 28). References 
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to cardinality were the most common, accounting for 48 percent of all 
inputs. Many of the inputs, such as equivalence, nonequivalence, ordering, 
calculation, and placeholding, were rare, each accounting for less than 5 
percent of all inputs.

After controlling for children’s prior performance, those in classrooms 
with a higher number of mathematics inputs displayed better performance 
in April on a short (15-item), multiple-choice test of general mathematical 
knowledge. Klibanoff et al. (2006) found only a small correlation between 
teachers’ syntactic complexity and frequency of math talk (r = .18). And 
only math talk, not syntactic complexity, was associated with gains in 
mathematical skills. As the authors point out, this is the first study to exam-
ine the specific effects of math talk on children’s knowledge, and research 
is needed to understand more about the direct role of math talk in early 
childhood classrooms.

In general, the amount and kind of language that occurs in the class-
room among teachers and children is frequently related to outcomes for 
children. Correlational research with preschoolers demonstrates that, dur-
ing large-group times, teachers’ explanatory talk and use of cognitively 
challenging vocabulary are related to better learning outcomes for children 
(Dickinson and Tabors, 2001).

The use of open-ended questions also has the potential to increase the 
math talk in a classroom or in a home. Effective teachers make greater 
use of open-ended questions than less effective teachers. They ask children 
“Why?” and “How do you know?” They expect children, as young as pre-
school, to share strategies, explain their thinking, work together to solve 
problems, and listen to each other (Askew et al., 1997; Carpenter et al., 
1998, 1999; Clarke et al., 2001; Clements and Sarama, 2007a, 2008a; 
Cobb et al., 1991; Thomson et al., 2005). As the questions become internal, 
children can increasingly become self-sustaining mathematical learners who 
carry and use a mathematical lens for seeing and understanding their world. 
Examples of such open-ended mathematical questions are

• Where do you see this (mathematical idea) in our classroom?
• Tell me how you figured out (this mathematical idea).
• What is (insert mathematical idea, such as adding or subtracting)?
• What happens when I break this apart/put these together?
• How does this compare with something else? (Which one is smaller/

larger? Longer/shorter?)
• Where are the units? What are the units (that children are familiar 

with)?
• Do you see a pattern? What is the pattern?
• How can I describe this idea for myself or for someone else (such as, 

can you draw a picture, describe it in words, or use your body)?
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Grouping as an Instructional Strategy

As described previously, data from the NCEDL studies and the ECLS-K 
indicate that mathematics is taught in a whole group most of the time, es-
pecially in kindergartens, where little time is allocated for centers or small 
groups. The almost nonexistent use of small groups in early childhood 
programs, documented in these studies, is of concern given that small-group 
instruction has been found to be an effective context for enhancing young 
children’s learning (Dickinson and Smith, 1993; Karweit and Wasik, 1996; 
Morrow, 1988).

Various mathematics curricula that use small groups as one of several 
or as the main instructional strategy have shown substantial positive effects 
(e.g., Clements, 2007; Clements and Sarama, 2008a; Preschool Curriculum 
Evaluation Research Consortium, 2008; Sarama et al., 2008; Starkey et al., 
2006). The results suggest that small-group work can significantly increase 
children’s scores on tests aligned with that work (Klein and Starkey, 2004; 
Klein, Starkey, and Wakeley, 1999), and can transfer to knowledge and 
abilities that have not been taught (Clements and Sarama, 2007a). Guide-
lines in these curricula generally suggest four children with a teacher as the 
small-group size, although teachers have been observed using group sizes of 
two (for low achievers, for children with special needs, or to introduce an 
idea or activity for the first time) to six (usually for efficiency’s sake; often 
used for easily managed activities).

Whole groups can also be effective for supporting mathematics learning. 
In one program, children as young as kindergarten engaged in teacher- and 
peer-scaffolded mathematics learning, problem solving, and discussion dur-
ing whole-class instruction (Fuson and Murata, 2007). Based on teaching-
learning paths, the program successfully enabled teachers to individualize 
mathematics in large-group activities—a promising strategy to give math-
ematics needed attention in the already packed schedule of half-day kin-
dergarten. French and Song (1998) document extensive use of whole-group 
instruction to good effect in Korean preschools. Effective whole-group 
interactions include brief demonstrations and discussions, problem solving 
in which children talk to and work with the person next to them (other chil-
dren and possibly adults), and physically active activities, such as marching 
around the room while counting (Clements, 2007; Clements and Sarama, 
2007a, 2008a). Box 7-2 provides an example.

Play as a Teaching and Learning Context

A highly motivating learning context for young children is child-initiated 
play (Wiltz and Klein, 2001). Preschool children engage in different types 
of play that have potentially different benefits for learning and develop-
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ment. Among the typically observed play experiences in an early childhood 
classroom are constructive play, such as block building; play with table toys 
(manipulatives, puzzles, Lego blocks); pretend play; mathematical play; and 
games, including ones in which mathematics is a secondary focus, as well 
as ones in which mathematics is the primary focus. (Of course children also 
engage in outdoor play, rough-and-tumble play, and other forms of play 
that have benefits as well.)

Block Building

Play, especially block play, provides valuable opportunities for children 
to explore and engage in mathematical activity on their own (Ginsburg, 
2006; Hirsch, 1996). Young children enjoy playing with blocks, and there 
is evidence that they naturally engage in mathematical play with them (Seo 

BOX 7-2 
Mathematics Activities with Different Size Groups

	 The	Building	Blocks	Program	dedicates	several	weeks	to	shape	composition.	
One	 theme	 is	 puzzles.	 In	 a	whole-group	 setting,	 the	 teacher	 asks	 the	 children	
what	 puzzles	 they	 like	 to	 solve	 at	 home	 and	 at	 school.	 She	 discusses	 various	
types	of	puzzles	and	what	puzzles	are,	showing	some	examples,	telling	the	chil-
dren	she	will	put	them	all	out	in	the	mathematics	centers.	She	then	introduces	a	
new	kind	of	puzzle:	outline	puzzles	that	can	be	completed	with	geometric	shapes	
(e.g.,	 pattern	 blocks	 or	 tangram	 pieces).	 She	 solves	 a	 simple	 puzzle	 with	 the	
children,	using	their	ideas	as	to	solutions.
	 Later,	with	small	groups	of	four	children,	the	teacher	introduces	several	of	the	
outline	puzzles.	She	carefully	observes	children’s	solutions	 to	 these,	evaluating	
where	each	child	 is	 in	 the	 learning	 trajectory	 for	 shape	composition.	Based	on	
these	observations,	she	provides	individuals	with	puzzles	at	different	levels	of	the	
learning	 trajectory	 (or	mathematics	 teaching-learning	paths),	 individualizing	 the	
challenge	for	each	child.
	 Meanwhile,	 the	 teacher’s	 assistant	 observes	 and	 discusses	 children’s	 work	
with	the	puzzles	in	the	mathematics	center,	as	well	as	supervising	those	in	other	
centers,	allowing	the	teacher	to	concentrate	on	the	small-group	work.	One	special	
center	involves	a	series	of	computer	activities,	the	Piece	Puzzler	series,	in	which	
children	also	solve	puzzles	by	manipulating	pattern	blocks	or	tangram	pieces	to	
complete	similar	outline	puzzles.	They	use	icons	of	the	geometric	motions	to	slide,	
turn,	and	flip	the	shapes	into	place.	Individualized	help	and	feedback	are	offered	
to	them	immediately.	For	example,	if	they	put	on	too	large	a	shape,	covering	the	
puzzle	and	also	other	areas,	the	computer	activity	makes	the	shape	transparent	
and	shows	them	that	it	covers	too	much	(something	difficult	to	show	with	physical	
manipulatives).	Also,	the	computer	activity	automatically	adjusts	the	levels	of	the	
puzzle	to	match	the	children’s	development	along	the	learning	trajectory.
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and Ginsburg, 2004). However, mathematics learning is enhanced if teach-
ers engage children in a discussion of mathematical principles during block 
play (Clements and Sarama, 2007a), such as introducing new terminology 
(e.g., edges, faces) and commenting on children’s rotation of objects during 
construction. The provision of these supports by teachers during play en-
hances children’s learning during the specific interaction as well as in future 
play sessions, when the child may incorporate these new ideas.

Research also indicates that teachers should incorporate planned, sys-
tematic block building into their curriculum, which they rarely do (Kersh, 
Casey, and Young, 2008). Preschoolers who are provided such scaffold-
ing display significant increases in the complexity of their block building 
(Gregory, Kim, and Whiren, 2003). Important to our teaching-learning 
paths approach (also called learning trajectories), the teachers’ scaffolding 
was based on professional development aimed at helping them recognize 
developmental progressions in the levels of complexity of block building. 
Teachers learned to provide verbal scaffolding based on those levels but 
not to directly assist children or engage in any block building themselves. 
Interventions that incorporate full teaching-learning paths—that is, a goal, 
a developmental progression, and matched activities—appear to be effective 
in developing children’s skills. Groups of kindergartners who experienced 
such a learning trajectory improved in block-building skill more than con-
trol groups who received an equivalent amount of block-building experi-
ence during unstructured free play sessions (Kersh et al., 2008).

One longitudinal study indicated that block building may help lay a 
foundation for mathematics achievement in later years (Wolfgang, Stannard, 
and Jones, 2001). More specifically, block building has been linked to 
improved spatial skills, although most of these studies are correlational 
(Brosnan, 1998; Serbin and Connor, 1979). Similarly, in a preschool popu-
lation, two types of block-building skills were associated with two mea-
sures of spatial visualization: block design and analyzing and reproducing 
abstract patterns (Caldera et al., 1999). In an experimental study, children 
who received instruction on spatial-manipulation improved in spatial visu-
alization skills, whereas the control group did not (Sprafkin et al., 1983).

Sociodramatic Play

One particularly valuable form of play is mature sociodramatic play—
pretend play that lasts 10 minutes or more and involves a theme, props, 
roles, rules for roles, and language interaction. An example would be four 
children playing grocery store with play food, a cash register, and shopping 
carts, and different children playing the roles of store manager, cashier, and 
customers. Rules restrict the behavior of each player—for example, only 
the cashier can use the register. A Vygotskian-based curriculum, Tools of 
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the Mind, uses this type of mature sociodramatic play as a primary format 
for children’s learning and development (Bodrova and Leong, 2007). In 
this approach, teachers scaffold children’s play skills by engaging them in 
preparing written play plans and reflecting after play is finished. Teachers 
work with children to make play more complex over time and to encourage 
the use of sophisticated vocabulary.

Studies of Tools of the Mind show positive impacts on language and 
early literacy (Barnett et al., 2006, 2008) and on self-regulation and execu-
tive functioning (Diamond et al., 2007). The latter is relevant for mathemat-
ics learning, as executive function and self-regulation are important for 
academic success. Executive function has been found to predict academic 
outcomes in school independent of intelligence or family background (Blair 
and Razza, 2007). Importantly, the approaches used in Tools of the Mind 
have been shown to be effective with children from low-income families.

Practice During Play

Learning many early mathematics skills, such as counting, requires 
large amounts of practice to become fluent. Play can be an excellent context 
for children to practice developing abilities. For example, 3- and 4-year-
old children will repeatedly attempt to build a block tower or string a set 
of beads in a pattern until they have mastered the skill to their personal 
satisfaction. Many mathematics competencies, such as counting, require 
repeated, often massive amounts of experience, as well as demonstrations, 
modeling, or scaffolding from adults (Fuson, 1988). Practice is important 
for consolidating skills, but such practice can be done in the meaningful 
and motivating context of children’s play and with teachers’ assistance as 
needed. For example, after a walk in the park, children can return to the 
classroom and examine their collections of leaves, trying to find out who 
has the most. The teacher can help the children to count their leaf collec-
tions, which they choose to do again and again. After repeatedly counting 
the separate collections, they can work as a group to count the total.

Children’s play and self-selected activities can provide valuable contexts 
for mathematics teaching and learning experiences. Capitalizing on their 
everyday experience is likely to motivate and help them see the relevance in 
mathematics, as well as lead to complex child-centered projects that include 
mathematics. Early childhood education has a strong tradition of teachers’ 
observation of children’s play for the purpose of determining how best to 
respond to support their learning. Teachers can and should be intentional 
in supporting and mathematizing children’s play experiences. However, 
using only “teachable moments” during child-initiated play is unlikely to 
lead to an effective, comprehensive mathematics program (Ginsburg, Lee, 
and Boyd, 2008).



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

STANDARDS, CURRICULUM, INSTRUCTION, AND ASSESSMENT 251

Mathematical Play

These examples bring us to another type of play, mathematical play, or 
play with mathematics itself (Sarama and Clements, 2009; see Steffe and 
Wiegel, 1994). The following features of mathematical play may be im-
portant for supporting learning: (a) it is a solver-centered activity with the 
solver in charge of the process; (b) it uses the solver’s current knowledge; 
(c) it develops links between the solver’s current schemes while the play is 
occurring; (d) it will, via “c,” reinforce current knowledge; (e) it will assist 
future problem solving/mathematical activity as it enhances future access 
to knowledge; and (f) these behaviors and advantages apply irrespective of 
the solver’s age (Holton et al., 2001).

Games

One recent study provides evidence that board games in which young 
children count on (1 or 2) along a number list (squares with numbers on 
them) can be an effective instructional tool for developing their numerical 
knowledge (Siegler and Ramani, in press). In an experiment conducted in 
a Head Start program, children played a board game, similar to Chutes 
and Ladders, four times (for 15 to 20 minutes) over a two-week period. 
The game used numbered squares for the experimental group and colored 
squares for the control group. Children using the numbered squares said the 
numbers on the squares as they moved their token one or two spaces. At the 
end of the intervention, children who played the number game demonstrated 
increased knowledge of four different number skills: numerical magnitude 
comparison, number line estimation, numeral identification, and counting. 
The gains were still apparent nine weeks later (Siegler and Ramani, in press). 
To achieve such gains through play, however, requires that important math-
ematical structures are used by children within the game.

Using Concrete Materials and Manipulatives

Using concrete materials, such as puzzles and matching games, with 
task selection and scaffolding adjusted to children’s strategies, is effective 
in moving them through mathematics teaching-learning paths (Clements 
and Sarama, 2007a). Manipulatives, such as small blocks, cubes, beads, 
and pegs, are ubiquitous in high-quality early childhood classroom environ-
ments. There is evidence suggesting that the use of manipulatives enhances 
mathematical knowledge for young children (Clements and Sarama, 2007a). 
This is an area in which there has been a fair amount of mathematics-
specific research (Clements and McMillen, 1996), although most work in 
this area has focused on elementary school children (e.g., Greabell, 1978; 
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Prigge, 1978). Concrete objects are needed for preschoolers to learn non-
verbal and counting strategies for addition and subtraction. In fact, children 
need objects to solve larger number problems until about age 5½ (Jordan, 
Huttenlocher, and Levine, 1992). The manipulatives give meaning to the 
task, count words, and order (Clements and Sarama, 2007a). That is, at 
a certain level, number is an adjective rather than a noun for children—
“5 kittens” is meaningful, but “5” as an abstract quantity is not.

Pictures can be useful in several ways, such as to illustrate concepts, 
and young children can learn to interpret pictures (Scott and Neufeld, 
1976). However, manipulatives can be more effective than pictures for 
teaching certain mathematical concepts, because pictures are not manipula-
ble, that is, they cannot be acted on extensively and flexibly (Clements and 
 McMillen, 1996; Gerhardt, 1973; Prigge, 1978; Sowell, 1989; Stevenson 
and McBee, 1958). For example, in one study children benefited more 
from using pipe cleaners than pictures to make nontriangles into triangles 
 (Martin, Lukong, and Reaves, 2007). They merely drew on top of the pic-
tures, but they transformed the pipe cleaners.

The suggestion that manipulatives and other materials are effective 
should not be interpreted to mean that young children should always be 
provided with manipulatives or that simply providing these manipulatives 
is sufficient. Rather, teachers should be thoughtful about the most appropri-
ate manipulative for a specific lesson. Once children have mastered a task 
using manipulatives, they can often solve simple arithmetic tasks without 
them (Grupe and Bray, 1999).

Using Computers

As all-purpose tools, computers can also constitute quite different 
environments that support mathematics teaching and learning. They can 
provide effective experiences, ranging from complex problem solving to 
practice with concepts and skills, managed at the children’s level of thinking 
and at the level of individual tasks.

The computer aids the metacognitive aspect of spatial activity, en-
abling the child to go beyond the physical world limitations (Clements 
and Battista, 1991; Johnson-Gentile, Clements, and Battista, 1994). For 
example, children can cut shapes and put them together in new ways. They 
become aware of and describe the geometric motions they use to solve 
geometric puzzles (Sarama and Clements, 2009; Sarama, Clements, and 
Vukelic, 1996)—that is, doing physical puzzles, they move shapes intui-
tively. However, on the computer, they choose the geometric motion—slide, 
flip, or turn—that they need. This helps them become explicitly aware of 
those motions and intentional in their use.

Children as young as age 3 have been shown to benefit from focused 
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computer activities (Clements, 2003). Connected representations in practice 
or tutorial computer environments help them form concepts that are inter-
related and thus mutually reinforcing. Computer environments can also 
foster deeper conceptual thinking, including a valuable type of “cognitive 
play” (Steffe and Wiegel, 1994). That is, children will pose problems for 
themselves and explore the computer objects or shapes with the same playful 
attitude—and the same beneficial learning—found in other types of play.

Several characteristics of effective computer software can guide its 
creation and selection (Clements and Sarama, 2005, 2008b; Sarama and 
Clements, 2002a, 2006):

• Actions and graphics should provide a meaningful context for 
children.

• Reading level, assumed attention span, and way of responding 
should be appropriate for the age level. Instructions should be clear, 
such as simple choices in the form of a picture menu.

• After initial adult support, children should be able to use the soft-
ware independently. There should be multiple opportunities for 
success.

• Feedback should be informative.
• Children should be in control. Software should provide as much 

manipulative power as possible.
• Software should allow children to create, program, or invent new 

activities. It should have the potential for independent use but should 
also challenge. It should be flexible and allow more than one correct 
response.

As with using manipulatives, initial adult support and active mentor-
ing has significant positive effects on children’s learning with computers 
(Sarama and Clements, 2002b). Effective teachers closely guide children’s 
learning of basic tasks; then they encourage experimentation with open-
ended problems. These teachers are frequently encouraging, questioning, 
prompting, and demonstrating, without offering unnecessary help or limit-
ing children’s opportunity to explore. The teachers redirect inappropri-
ate behaviors, model strategies, and give children choices. Whole-group 
discussions that help children communicate about their solution strategies 
and reflect on what they’ve learned are also essential components of good 
teaching with computers.

Using Movement

Another context for learning mathematics is teachers’ use of movement 
to engage children. There is evidence suggesting that young children benefit 
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from engaging in self-directed movement during instruction, particularly 
in learning spatial concepts (Poag, Cohen, and Weatherford, 1983; Rieser, 
Garing, and Young, 1994). During a mapping activity, for example, chil-
dren are more likely to benefit from actually taking a tour around the 
classroom than simply thinking about the classroom and being asked to 
represent it abstractly (Ginsburg and Amit, 2008).

Book Reading

Book reading is used frequently in early childhood settings. Earlier 
studies have produced equivocal results with relation to the effect of book 
reading on mathematics achievement (Hong, 1996). However, several re-
cent studies provide evidence that this can be an effective learning context 
for mathematics instruction (Casey, Kersh, and Young, 2004; Casey et al., 
2008; Young-Loveridge, 2004). Young-Loveridge (2004) provides evidence 
that children exposed to a seven-week pull-out4 mathematics program, 
using storybooks, rhymes, and games, made greater gains pre- to posttest 
on mathematical knowledge than did children not receiving this program. 
Casey and colleagues (2008) provide evidence that mathematics content 
(spatial and number skills) delivered in a storytelling context produced 
greater mathematics learning than delivering the content alone. Notably, 
the approach, Storytelling Sagas, is based on a series of specially written 
mathematics storybooks for preschool through Grade 2 that are primarily 
mathematical and secondarily for literacy. However, the approach demon-
strates the important role of language in children’s mathematics learning. 
In this study, researchers compared an intervention that taught a specific set 
of geometry skills in a storytelling context and alone. Kindergarten children 
who learned the geometry content in a storytelling context appeared to 
gain more knowledge, as assessed on both near- and far-transfer tasks. The 
authors suggest that the storytelling context engages children in the content 
in ways that more decontextualized instruction does not.

FORMATIVE ASSESSMENT

A core instructional principle of early childhood education is that teach-
ing must be child-centered and “developmentally appropriate” (Copple 
and Bredekamp, 2009). To promote genuine and enthusiastic learning, 
the teacher must be sensitive to the individual child’s emotions and must 
establish a trusting and supportive relationship with him or her. But child-
centered and developmentally appropriate teaching requires cognitive as 
well as emotional sensitivity: to support mathematics learning, the teacher 

4 Pull-out programs remove children from the regular classroom for some portion of the day 
to give specialized instruction.
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must acquire an understanding of the child’s current mathematical perfor-
mance and knowledge.

Formative assessment is the process of gaining insight into children’s 
learning and thinking in the classroom and using that information to guide 
instruction (Black and Wiliam, 1998b) and improve it (Black and Wiliam, 
2004). According to the National Mathematics Advisory Panel (2008), 
“Teachers’ regular use of formative assessments improves their students’ 
learning, especially if teachers have additional guidance on using the assess-
ment results to design and individualize instruction” (p. 47).

Formative assessment does not involve formal testing conducted out-
side the classroom (with results usually left there); however, it can provide 
teachers a way in which to track children’s progress toward high-quality 
early learning standards. Formative assessment entails the use of several 
methods—observation, task, and flexible interview—to collect information 
about children’s thinking and learning and then adapt teaching methods to 
help them learn. It is often inseparable from teaching and usually not dis-
tinctly identified as assessment. Teachers assess children all the time, often 
unaware that they do so. But formative assessment can also be more delib-
erate and organized than is usually the case. This section provides guidance 
about how teachers can use formative assessment to improve classroom 
teaching practices so that students’ learning needs are best met.

Rationale for Formative Assessment

The need for sound formative assessment is evident from a variety of 
theoretical perspectives. Approaches that stress the need to capitalize on the 
teachable moment (Dodge, Colker, and Heroman, 2002) require teachers 
to understand when that moment occurs—that is, when the child is ready 
to learn—and then to exploit it so as to help the child undertake further 
learning. Using observation to identify the teachable moment is one use of 
formative assessment (Seo, 2003).

Early childhood educators often draw on Vygotsky’s theory to advo-
cate effective scaffolding. Scaffolding in turn involves first determining the 
child’s “actual developmental level” so that one can help the child reach 
his or her potential “through problem solving under adult guidance or in 
collaboration with more capable peers” (Vygotsky, 1978, p. 86). Determin-
ing both actual and potential developmental level, as well as the scaffold-
ing useful to help the child traverse this “zone of proximal development,” 
requires formative assessment.

Piaget’s theory stresses the distinction between overt performance and 
underlying thought (Piaget and Inhelder, 1969). To illustrate: A child says 
that the sum of 3 apples and 2 apples is 6 apples. The incorrect response 
is clearly important and needs to be corrected, but even more important 
is the method used to obtain the response. The child may have got it by 
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faulty memory (“I just knew it”), faulty calculation (the child miscounts the 
objects in front of him or her), or faulty reasoning (“I know that 3 and 2 is 
more than 4 and 6 is 2 more than 4”). Identifying and promoting underly-
ing thought requires formative assessment.

Contemporary cognitive theories often stress establishing a link be-
tween the child’s informal knowledge and what is to be taught (Baroody, 
1987; National Research Council, 1999; Resnick, 1989, 1992). The child 
brings to the task of learning a body of prior knowledge—an “everyday 
mathematics” that is often relatively powerful and sometimes a source of 
misconceptions. In either case, the teacher needs to understand the child’s 
current cognitive state (the everyday mathematics) in order to adjust in-
struction to it. Sometimes the everyday mathematics can serve as a fruit-
ful basis for further development; the child’s learning may in part involve 
mathematizing what she or he already knows. Sometimes the teacher needs 
to employ methods to help the child abandon everyday concepts in favor of 
more accurate notions, as when the child believes that the symbol = means 
“get an answer” instead of an equivalence relation (Seo and Ginsburg, 
2003), or that a long, skinny scalene triangle is not an acceptable triangle 
(Clements, 2004).

Those who practice behavior modification also need to employ for-
mative assessment to acquire an accurate account of the child’s current 
behavior so they know what to shape. Careful observation of behavior and 
decisions about appropriate reinforcement can also be conceptualized under 
the rubric of formative assessment.

In brief, many theoretical approaches advocate getting information 
about the child’s current behavior, thinking, and learning so that effective 
teaching can be implemented. It is hard to imagine a theory of teaching that 
would advocate ignorance of the child’s mind or behavior.

Three Kinds of Formative Assessment

Formative assessment is a very natural and commonplace activity for 
teachers, who do it all the time without necessarily knowing that what they 
do is assessment. Here we discuss three major kinds of formative assess-
ment: everyday observations, tasks, and interviews (see Box 7-3). These ev-
eryday practices of observation, presenting tasks, and interviewing involve 
an informal, often unplanned, implementation of formative assessment, 
which is so bound up with everyday teaching that it often goes unrecog-
nized. Yet the three types of formative assessment can be rigorous, focused, 
and deliberate. The early childhood assessment systems discussed here 
include widely used integrated programs as well as mathematics-specific 
programs: Big Math for Little Kids, Building Blocks, Core Knowledge, 
Creative Curriculum, High/Scope, and Number Worlds.
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BOX 7-3 
Formative Assessment

	 Teachers	often	use	everyday observations	to	make	inferences	about	children’s	
abilities.	The	teacher	sees	that	Juanita	often	spontaneously	names	shapes	as	she	
places	them	on	the	table.	She	can	identify	large	and	small	objects	and	red	and	
green	objects	as	rectangles,	and	she	even	knows	the	name	for	a	trapezoid.	The	
teacher	concludes	that	she	can	see	the	differences	among	various	shapes,	un-
derstands	that	color	and	size	are	irrelevant,	and	even	knows	some	shape	names.	
She	is	now	ready	to	learn	to	mathematize	her	knowledge—that	is,	to	analyze	the	
properties	of	shapes	so	that	she	will	understand	explicitly	what	defines	a	rectangle	
and	other	shapes.
	 Teachers	 also	 give	 children	 specific	 tasks	 to	 elicit	 their	 understanding.	The	
teacher	has	seen	that	Juanita	spontaneously	names	rectangles	and	trapezoids	
but	has	never	seen	her	name	a	square.	So	 the	 teacher	shows	her	a	 large	 red	
square	and	a	small	green	one	and	asks	what	they	are.	Juanita	says	that	the	red	
one	is	a	square	but	that	the	green	one	is	not.	Having	given	this	specific	task,	the	
teacher	now	concludes	that	Juanita	knows	the	name	for	square	but	applies	it	in	a	
rather	unusual	way.	The	teacher	is	puzzled	because	Juanita	was	able	to	identify	
small	green	rectangles	as	rectangles,	but	she	cannot	ignore	size	or	color	in	the	
case	of	squares.
	 Why	does	she	do	this?	To	find	out,	the	teacher	goes	a	step	further.	She	wants	
to	 know	 how	 Juanita	 thinks	 about	 squares.	What	 makes	 something	 a	 square?	
What’s	 the	 role	 of	 color	 and	 size?	 Can	 she	 talk	 about	 it?	 So	 she	 interviews	
Juanita.	She	asks	her	why	she	said	this	large	red	object	was	a	square,	whereas	
this	small	green	one	was	not.	Juanita	says	 that	color	does	not	matter,	but	 that	
squares	have	to	have	4	sides	the	same	length	and	have	to	be	big.	Why	do	they	
have	to	be	big?	She	does	not	know.
	 The	teacher	concludes	that	her	lessons	on	shape	should	include	specific	at-
tention	to	issues	of	size	and	when	it	is	relevant	or	not	relevant.	And	the	teacher	
has	a	clue	about	how	to	proceed.	She	will	put	Juanita	in	a	situation	of	cognitive	
conflict,	which,	according	to	Piaget	(1985),	is	a	major	impetus	to	cognitive	growth	
(Limon,	 2001).	 She	 points	 out	 to	 Juanita	 that	 color	 and	 size	 do	 not	 matter	 for	
rectangles.	Why	should	they	matter	for	squares?	Juanita	looks	puzzled.	But	then	
she	 quickly	 agrees	 that	 of	 course	 squares	 can	 be	 small,	 too.	 Her	 expression	
says:	How	silly	 to	 think	otherwise!	Assessments	 like	 these	 take	place	 in	many	
classrooms.	Teachers	observe	their	children,	set	them	brief	everyday	tasks,	and	
question	them	about	their	thinking.	They	do	these	classroom	assessments	on	the	
fly,	spontaneously,	and	without	special	preparation.	Sometimes	children	 learn	a	
good	deal,	and	sometimes	they	don’t.

Obser�ation

Observation involves several components. One is obtaining useful in-
formation. The teacher needs to observe relevant aspects of an individual 
child’s mathematical behavior. For example, she needs to observe that, in 
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free play, the child is not only comparing the lengths of two blocks but also 
makes the mistake of failing to use a common baseline. This is not easy 
to do when the teacher must observe and supervise a room full of young 
children who have many needs and who exhibit complex patterns of be-
havior. There is an enormous amount of behavior taking place at any one 
moment in the classroom day. Nevertheless, it is possible for teachers to 
focus observations on at least a few children in order to provide activities 
that promote further mathematics learning.

A second important component of observation is interpretation of the 
evidence. The observer needs to understand what the behavior means. In the 
example above, the child’s failure to use a common baseline in comparing 
the length of blocks indicates a common misconception of a fundamental 
idea underlying measurement (Clements, 2004; Piaget and Inhelder, 1967). 
Teachers need to be aware of and understand this misconception in order to 
interpret behavior accurately. Observation is very theoretical. To interpret 
everyday behavior, the teacher needs to be familiar with the development 
of mathematical thinking, as well as with the mathematics about which the 
child is thinking. Teachers need to receive professional development about 
learning in early childhood to be able to effectively interpret their observa-
tions of children’s mathematical thinking.

A third component of observation is careful evaluation of evidence. 
Suppose the teacher sees a child spontaneously place a red and a blue 
isosceles triangle into one collection. But the child does not place a red 
skinny irregular (scalene) triangle into that same collection. Does this 
evidence suggest that the child has an understanding of triangles? On one 
hand, maybe the child did not see the small triangle and, had she seen it, 
perhaps would have placed it with the others, thus demonstrating at least 
some understanding of what defines a triangle. On the other hand, maybe 
she did see it and decided not to include it with the others because it was 
so strange looking, not an isosceles triangle, thus revealing that she had a 
narrow concept of a triangle. The evidence is inconclusive, and one can-
not make a firm conclusion; both interpretations are possible. Evaluation 
of evidence requires skills of critical thinking that do not come easily and 
often need to be taught (Kuhn, 2005).

How well do teachers observe mathematical behavior? Research on this 
issue appears to be lacking. But there are reasons to be pessimistic about the 
likelihood that they make useful and insightful observations. Teachers sel-
dom have time to observe behavior during free play; they tend to have their 
hands full with management and discipline (Kontos, 1999). Also, teachers 
may not know what to look for. As Piaget said, observation requires knowl-
edge of what is to be observed—in this case, mathematical thinking: “if 
they are not on the lookout for anything . . . they will never find anything” 
(Piaget, 1976a, p. 9). In addition, as Chapter 8 discusses, early childhood 
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teachers have little training in either early mathematics education or math-
ematics, especially in the analysis of mathematical behavior.

Organized systems of observation. Teachers need guidance in the ob-
servation of mathematical behavior. Their college or university education 
may have provided some useful experience in observation. And although 
popular textbooks on the subject (e.g., Boehm and Weinberg, 1997; Cohen, 
Stern, and Balaban, 1997) discuss general issues of observation, they do 
not discuss in any depth the observation of mathematical behavior in 
particular.

Several widely used curricula offer guidance in observation of math-
ematical behavior. They may provide checklists for observation of various 
topics with directions about which behaviors should be recorded. For ex-
ample, one form instructs teachers to record their observations of a child’s 
knowledge of number and operations. The checklist specifically focuses on 
counting aloud in the correct order and grouping objects. A checklist like 
this is broad and provides teachers with little guidance for assessing chil-
dren’s mathematical knowledge. Rather, teachers should use the checklist as 
a start to assessing where children are on the mathematics teaching-learning 
path. Ideally, teachers would use follow-up questions and various tasks in 
conjunction with observation to ascertain the child’s level of mathematical 
knowledge. At best, the observations give only an extremely crude idea of 
the child’s interests and provide very little information about his or her 
knowledge.

Other widely used early childhood mathematics assessment systems 
offer the opportunity for the teacher to collect interesting anecdotes about 
individual children. For example, teachers create a personal log of each 
child’s actions and abilities with spaces for writing numerous anecdotes—
brief reports on individual children’s classroom behavior and work samples 
that highlight their developing abilities. Again, we note that observation of 
mathematical behavior requires training and theoretical background. These 
assessment systems do not seem to provide evidence concerning the quality 
of observations or their usefulness.

Other curricula and their related assessment systems stress the analysis 
of various products of learning activities. The Reggio Emilia group in Italy 
uses “pedagogical documentation to capture learning moments through ob-
servation, transcriptions and visual representations that provoke reflection 
and inspire teachers, children, and parents to consider the significance of 
the interactions taking place, and the next steps to be taken in teaching and 
learning” (MacDonald, 2007, p. 232).

Strengths and weaknesses of observation. Observation can be an ex-
tremely powerful method. It may provide insight into the child’s spontane-
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ous interests and everyday competence in the absence of adult pressure or 
constraint. Observation deals with behavior in “authentic” situations, like 
block play or snack time. The teacher may learn from careful observation 
that the child possesses a competence that is not expressed when he or she 
is tested or given instruction.

At the same time, no single method of assessment is perfect, always 
accurate, or completely informative, and observation has some limita-
tions. Sometimes, the teacher can wait indefinitely before observing truly 
important behavior. Sometimes, the child’s behavior does not express the 
true extent of her or his competence. As Piaget said: “How many inex-
pressible thoughts must remain unknown so long as we restrict ourselves 
to observing the child without talking to him?” (Piaget, 1976a, pp. 6-7). 
Thus, observation may show that the child does not seem to sort objects 
by common shapes, putting triangles into one group and rectangles into 
another. Instead, he or she places them all into one messy collection and 
tells stories about them. Does this mean that the child does not understand 
the difference between triangles and rectangles? The observer will never 
know without explicitly asking the child to sort them. This is a task, the 
next type of assessment.

Task

Sometimes to find out about a child’s learning, thinking, or perfor-
mance, one presents him or her with some kind of task, a simple problem 
to solve. The teacher may ask, “What do you see in this picture book? 
What is the clown doing?” Or the teacher may say, “What do you call this 
thing [a triangle]?” The child’s response may give an indication of his or 
her competence. If the child says, “The clown is juggling three balls,” then 
the teacher may learn something about the accuracy of his or her counting 
skills. If in response to the question about the triangle the child says, “I 
don’t know,” then the teacher has learned that the child may not be able to 
produce the correct word or apply it to at least a certain kind of triangle. 
Yet from Vygotsky’s perspective, the child’s response to this task may be 
an indication only of current developmental level. The teacher therefore 
goes on to provide a little scaffolding, asking, “What shape is it?” The 
child then answers, “a triangle,” and this indicates his level of potential 
development.

In brief, tasks are initiated by the teacher to learn about the child’s 
performance with respect to a particular topic of interest to the teacher. 
Basically, the teacher wants to know whether the child can do something—
count, recognize a triangle, or make a pattern—perhaps with a little help.

Evidence about how well teachers employ tasks in the classroom ap-
pears to be lacking. Yet it may be relatively easy for the teacher to ask the 
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child to respond to simple tasks with which the child is engaged during free 
play (“What is that block called?”) or to ask questions about the topic of 
the teacher’s instruction (“Which animal is first in line?”). Of course the 
teacher must interpret the child’s response with accuracy and is therefore 
faced with some of the same difficulties as discussed in the case of observa-
tion. The teacher must understand the development of mathematical think-
ing to appreciate the meaning of the child’s response.

Organized systems of tasks. Some early childhood curricula present a 
series of tasks as the basis of their assessment system. For example, an 
item might instruct the teacher to use manipulative counters (e.g., blocks) 
to create different groups of objects containing between one and four items 
and to arrange the groups in different configurations (e.g., straight line, 
random grouping). The teacher would need to be sure that the child had 
several opportunities to correctly count, and she would record whether the 
child counted correctly and, for incorrect counts, the kinds of mistakes the 
child made.

The task employed, namely to count a given number of objects, is com-
mon both in the research literature and in some tests at this age level (e.g., 
Ginsburg and Baroody, 2003). What appears to be lacking, however, is any 
indication of how to interpret the results. What does it mean, for example, 
if the child can count a randomly arranged set of 3 but not 4, which he 
or she can count if it is placed in a line? Several primary mathematics cur-
ricula have a large collection of tasks with a clear theoretical basis (Case 
and Okamoto, 1996; Griffin, 2004).

Strengths and weaknesses of tasks. The strength of this method is that 
it provides information about the child’s performance on a task in which 
the teacher has an interest. The teacher is attempting to teach something 
about pattern and needs to know whether the child is “getting it” so that 
she can take the next appropriate instructional step. There is some evidence 
that, at least at the elementary school level, frequent monitoring of student 
behavior can improve performance (Fuchs et al., 1999).

But there are at least two basic weaknesses in using tasks. The first is 
also its strength, namely that the teacher’s interests determine the choice 
of task. The teacher is trying to teach pattern, but the child may in fact 
be more interested in or dealing with another topic, like the shapes of the 
objects intended to comprise the pattern. Because children do not always 
learn what teachers teach, teachers’ questions about what they are trying to 
teach do not necessarily reveal what the child is learning. Second, the child’s 
behavior may indicate success or failure on the task but does not necessarily 
reveal how the child construes or solves the task. As Piaget pointed out, it 
is not enough to ascertain the child’s answer; one must in addition learn 
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how the child got it. It is possible for the correct answer to be the result of 
a mechanical process devoid of understanding and for an incorrect answer 
to be the result of insightful thinking.

Flexible Inter�iew

A constructivist and child-centered perspective demands that the teacher 
go beyond observation and tasks to probe the child’s thinking. Observation 
and tasks can provide useful information about performance, but the flex-
ible interview is needed to dig below the surface to learn what the child is 
thinking. A truly child-centered, cognitively sensitive approach requires ask-
ing how the child solved the problem, how she got the answer, and why she 
said what she did. This kind of questioning originated in Piaget’s “clinical 
interview method” (Piaget, 1976a), which we term “flexible interviewing,” 
so as to avoid any connotation of the “clinical interview” devoted to the 
investigation and cure of pathological phenomena.

Flexible interviewing involves several steps (Ginsburg, 1997). First, the 
interviewer notices what seems to be an important child behavior worthy 
of further investigation. Sometimes this occurs in the course of naturalistic 
observation of everyday classroom activities. More frequently it occurs 
when the child gives an interesting response to a task. In either event, the 
interviewer follows up in various ways. He may rephrase the initial ques-
tion, ask the child to talk about how she or he solved the problem, or 
request that the child expand on an answer or justify it. Occasionally the 
interviewer may challenge a child’s response and ask her to prove why it 
is not correct. The essential questions include: “How did you figure it out? 
How did you know? How did you get the answer? Tell me more about it. 
How do you know you are right?”

In general, the rationale is that, if the goal is to learn what the child is 
thinking, the teacher must engage in flexible interviewing, asking the child 
to elaborate on his or her ways of interpreting and approaching a problem. 
Note that the flexible interview involves elements of both the task and ob-
servation. The interviewer frequently begins with a simple task for the child 
to solve (“What do you call this figure?”) and then follows up on the child’s 
response (“Why do you think it is a triangle?”). And as the child seems to 
be thinking about the problem or provides an answer, the interviewer care-
fully observes the child’s behavior to determine, for example, whether he 
points to a certain object or looks confused or seems to whisper his thought 
aloud. Indeed, Piaget maintained that the interview method combines the 
best of observation and task.

Flexible interviewing involves a good deal of skill and mental agility. 
It requires the same kind of observational sensitivity, critical thinking, and 
interpretive skills discussed in connection with observation and task. It also 
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requires the interviewer to think on her feet, to improvise, and to come up 
with the right follow-up question on the spot.

How frequently and well do teachers employ the flexible interview 
in the classroom? Research on the issue seems to be lacking. At the same 
time, flexible interviewing, although difficult, is a natural form of human 
interaction in which the participants attempt to make sense of problems 
and how they can be solved—“clinical interviewing is a species of naturally 
occurring mutual inquiry” (diSessa, 2007, p. 534). Asking a person why he 
or she said or did something is an entirely familiar form of discourse and 
not necessarily artificial or lacking in ecological validity.

Organized systems. Few curricula provide extensive guidance in flexible 
interviewing. D.M. Clarke and colleagues (Clarke et al., 2001) have used a 
developmental trajectory theory as the basis for development of an exten-
sive collection of “task-based interviews” for children beginning at age 5.

The collection of interview items is intended to form the basis for a 
comprehensive program of professional development, as well as to serve as 
a formative assessment tool for the teacher. “The [theoretical] framework 
of growth points provides a means for understanding young children’s 
mathematical thinking in general, the interview provides a tool for assess-
ing this thinking for particular individuals and groups, and the professional 
development program is geared towards de�eloping further such thinking” 
(p. 2). In many respects, the work is a model for what should be done in 
this area. To date, few early childhood curricula provide guidance on flex-
ible interview. Big Math for Little Kids (Ginsburg, Greenes, and Balfanz, 
2003), however, includes extensive guidance on flexible interviewing for 
each major topic. The Number Worlds curriculum (Griffin, 2007) offers 
an assessment system that largely involves a series of tasks (boldly called 
“tests”), some of which include flexible interview follow-ups. For example, 
“How many more smiley faces does the hexagon have than the triangle 
has? How did you figure that out?” (p. 72). After these instructions, an 
example of a possible child response is presented: “2 more; I counted to 3 
and there were 2 left that I didn’t count” (p. 72). In general, the focus on 
flexible interviewing, even though it is at the very heart of a child-centered 
approach, is limited in current curricula.

Strengths and weaknesses. The flexible interview can provide basic and 
often surprising information about children’s knowledge. It sometimes 
shows that the child who seems to know something really doesn’t, and 
the child who doesn’t seem to know something really does. This kind of 
information can help teachers overcome preconceptions they might have 
about children’s abilities. For example, teachers may expect low-income 
children to be more capable of procedural than conceptual knowledge. 
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The results of a flexible interview may help to disabuse the teachers of this 
preconception.

The flexible interview allows the interviewer to make sense of puzzling 
observations of everyday behavior or responses to tasks. The benefits ac-
cruing from this knowledge may be considerable: Understanding the child’s 
perspective can provide a sensitive guide to instruction. If the child’s wrong 
response was the result of a misinterpretation of the question, the teaching 
solution is different from what is needed if the response resulted from a 
basic misunderstanding.

Also, use of the method entails secondary benefits. Flexible interviewing 
requires that teachers talk a great deal with children. Furthermore, flexible 
interviewing not only promotes the teacher’s language but also requires it 
from the child. Flexible interviewing stresses to the child the importance 
of talking about one’s thinking, justifying one’s conclusions, and in general 
engaging in mathematical communication, which as we have seen is one 
of the main goals of mathematics education at all levels (National Council 
of Teachers of Mathematics, 2000; National Research Council, 2001a). 
Indeed, the very process of being interviewed may have a salutary effect on 
the child. There is some evidence with older children that self-explanation 
(providing an explanation of material recently studied) promotes increased 
understanding (Chi et al., 1994). Similarly, the requirement to explain one’s 
thinking might help one to examine, organize, and in the process even 
improve it.

Interviewing can be hard to do well, especially when very young chil-
dren are involved. As noted, it demands interpretative skill, creativity, and 
flexibility in questioning. It is easy to ask misleading or uninformative ques-
tions and distort results; it requires considerable skill and sophistication 
to do really well. It is hard for young children to be aware of their mental 
processes or to describe them in words (Flavell, Green, and Flavell, 1995; 
Kuhn, 2000; Piaget, 1976). The strength of the method—its flexibility and 
sensitivity to the individual—is at the same time its weakness.

Some General Remarks

In general, children’s developmental characteristics make it difficult, 
although not impossible, to assess their learning, thinking, or performance. 
They can be shy, uncooperative, nonverbal, impatient, noncommunicative, 
and so on. Their self-regulation skills are imperfectly developed (Bronson, 
2000), and they are egocentric (Piaget, 1955). The result is that assessment 
of the child at any one point in time may be inaccurate. But that does not 
mean teachers should not attempt to assess. It means that assessment needs 
to be done as sensitively as possible. Similarly, it is hard to diagnose a 2-
year-old child’s hearing, but there is a moral obligation to do it as well as 
possible.
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Similarly, because of the natural fluctuation and rapid development 
of children’s behavior, a single assessment—whether done by observation, 
task, or interview—may not provide accurate information. It is necessary 
to assess young children frequently and to base educational decisions on 
multiple sources of information (National Research Council, 2001b, 2008). 
Formative assessment should be complementary to program evaluation, 
which is conducted outside the classroom (see Box 7-4). Also, it is possible 
and sometimes desirable to blend the three methods. Thus, the teacher can 
observe in the natural setting and at the same time give the children simple 
tasks and even interview them.

The importance of teachers’ understanding of their students cannot 
be overemphasized. According to the National Research Council report 
Adding It Up: Helping Children Learn Mathematics, “information about 
students is crucial to a teacher’s ability to calibrate tasks and lessons to 
students’ current understanding. . . . In addition to tasks that reveal what 
students know and can do, the quality of instruction depends on how teach-
ers interpret and use that information. Teachers’ understanding of their 
students’ work and the progress they are making relies on . . . their ability 
to use that understanding to make sense of what the students are doing” 
(National Research Council, 2001a, pp. 349-350). Teachers’ understanding 
of their students is the key, or at least one key to successful teaching.

Finally, although formative assessment shows great promise, the meth-
ods of assessment have not been clearly linked to instructional interven-
tions. In fact, there seem to be few if any research studies that investigate the 
power of formative assessment to improve student achievement (exceptions 
include Black and Wiliam, 1998a, 1998b; Heritage, Kim, and Vendlinkskil, 
2008). One of these studies suggests that, although elementary school 
teachers are reasonably skilled in interpreting student behavior, they have 
difficulty linking the assessment to subsequent teaching (Heritage, Kim, and 
Vendlinski, 2008). Clearly, further research and development are required. 
Development is needed to create links between assessment and instruction, 
and research is needed to investigate the effectiveness of those links. All of 
this should be easier to do in the teaching-learning paths described in this 
report because they keep the teacher situated in an organized set of goals 
with directionality both for individual children and for the class.

RESEARCH ON THE EFFECTIVENESS OF 
MATHEMATICS CURRICULUM

Although this chapter addresses the topics of pedagogy and curriculum 
separately, in practice there is often no clear distinction between the two. 
This is especially true in early childhood education. Early childhood cur-
riculum has traditionally emphasized the process of teaching and learning 
rather than the content of what children are learning (National Association 
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BOX 7-4 
Comments on Program Evaluation

	 Programs	 for	young	children,	 like	 those	 for	older	ones,	need	 to	be	held	ac-
countable.	People	want	 their	children	 to	 receive	 the	best	early	childhood	math-
ematics	education	possible.	There	is	no	dispute	as	to	the	necessity	for	evaluation	
of	programs,	but	the	evaluation	has	to	be	as	fair,	sound,	and	based	on	scientific	
evidence	and	theory	as	much	as	possible.
	 Current	evaluations	are	informative	but	limited.	Several	obstacles	need	to	be	
overcome	to	 improve	 the	quality	of	evaluation	efforts.	First,	 it	 is	hard	 to	assess	
young	children.	Just	as	in	the	case	of	formative	assessment,	observation	alone	
is	insufficient,	and	the	adult	must	employ	some	form	of	task	or	interview.	But	as	
pointed	out	earlier,	even	when	a	friendly	adult	does	the	assessment	on	a	1-to-1	
basis,	 young	 children	 can	 be	 shy,	 uninterested,	 uncooperative,	 or	 inconsistent.	
Conditions	 like	 these	 require	 highly	 trained	 adult	 assessors	 who	 can	 engage	
children	and	approach	 the	assessment	with	sensitivity	and	 intelligence.	This	 in	
turn	“creates	significant	feasibility	issues	for	large-scale	accountability	initiatives.	
Relatively	 large	numbers	of	assessors	must	be	 trained	and	supervised.	Quality	
assurance	 is	 another	 major	 challenge:	 the	 consistency,	 credibility	 and	 integrity	
of	child	assessment	reports	must	be	established	and	monitored”	(National	Early	
Childhood	Accountability	Task	Force,	2007,	p.	23).
	 Second,	and	even	more	 important,	 there	are	 few	psychometrically	valid	as-
sessment	 instruments	 to	use	 in	 the	evaluation	of	 early	mathematics	education	
programs.	Current	instruments	either	focus	on	a	narrow	aspect	of	early	mathemat-
ics,	 like	number	 (e.g.,	Ginsburg	and	Baroody,	2003),	or	 lack	extensive	psycho-
metric	support.	A	useful	assessment	should	cover	a	broad	array	of	mathematical	
knowledge,	from	number	to	pattern	to	space.	Also,	it	should	examine	the	“produc-
tive	disposition,”	that	is,	the	“habitual	inclination	to	see	mathematics	as	sensible,	
useful,	and	worthwhile,	coupled	with	a	belief	in	diligence	and	one’s	own	efficacy”	
(National	Research	Council,	2001a,	p.	5).	And	the	evaluation	it	should	be	easy	to	
administer	and	enjoyable	 to	 take.	Such	an	 instrument	with	sound	psychometric	
qualities	 is	 not	 yet	 available.	 Because	 evaluations	 are	 only	 as	 valuable	 as	 the	
measures	they	employ,	current	evaluations	must	be	considered	of	limited	value.
	 Finally,	 it	 is	 as	 important	 to	 assess	 program	 quality,	 including	 teaching,	 to	
assess	 the	 children’s	 performance.	 At	 present	 there	 are	 few	 psychometrically	
sound	measures	of	early	mathematics	teaching	or	program	quality	(for	an	in-depth	
discussion	on	this	topic,	see	National	Research	Council,	2008).
	 Just	as	early	mathematics	education	has	been	neglected	for	many	years,	so	
have	the	methods	needed	to	evaluate	it.	In	view	of	the	former,	the	latter	should	
come	as	no	surprise.	As	a	result,	considerable	research	and	development	need	to	
be	conducted	to	create	evaluation	methods	appropriate	for	examining	the	quality	
of	programs	and	their	success	in	educating	children.

for the Education of Young Children, 1997). Given this view of curricu-
lum, research and debate have focused on which curriculum model is most 
effective in supporting children’s short-term and long-term development 
(Epstein, Schweinhart, and McAdoo, 1996).

Many early childhood educators are not comfortable with defining 
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curriculum as a written plan or specifying scope and sequence in advance. 
This concern grows out of the strong tradition of emergent curriculum in 
early childhood education (Jones and Nimmo, 1994). According to this 
perspective, the focus should be on children, not on curriculum. Advocates 
of emergent curriculum believe that children’s interests and needs should 
determine what goes on in a classroom rather than a predetermined plan. 
They also assume that a planned scope and sequence cannot be responsive 
to children’s individual and cultural variations.

Emergent curriculum is often implemented using the project approach 
(Katz and Chard, 1989), in which children and teachers engage in an in-
tensive investigation of a topic of interest. Sometimes people refer to the 
project approach as a curriculum model, but it is more akin to a teaching 
strategy or context. In recent years, advocates of the project approach have 
been more specific about how state standards can be incorporated and 
met during the planning and implementation of a project (Helm and Katz, 
2000). To help children achieve learning goals, educators have begun to 
emphasize intentional teaching in an emergent curriculum or project ap-
proach (Epstein, 2007).

During the past 15 years, early childhood practice in the United States 
(and throughout the world) has been influenced by the Reggio Emilia ap-
proach (Edwards, Gandini, and Forman, 1998). The approach is not a 
curriculum, nor is it a model. It is a coherent set of principles and practices 
that reflect a sociocultural perspective on learning and development. A key 
element of the approach is serious project work involving small groups of 
children collaborating with teachers to undertake investigations, theorizing, 
representing, revisiting experiences, and revising conceptualizations. Project 
work often arises from real rather than contrived situations. For example, 
one school needed a new table and the carpenter asked for measurements, 
a project documented in a book called Shoe and Meter (Reggio Children, 
1997). The children worked together to figure out how to measure the 
table. They tried measuring using their various body parts but were dis-
mayed to discover that each person’s foot was a different length. Finally, 
they chose one child’s foot to be their standard length. Then, they held his 
foot up to the ruler and determined how it compared, and so on.

In the past decade in the United States, there has been an explosion in 
commercially published early childhood curriculum resources. In 2007, the 
PreK Now website listed 27 research-based curricula for preschool children 
(see http://www.preknow.org). Some of these curricula are comprehensive—
designed to address all domains of children’s learning and development. 
These comprehensive programs tend to be organized into units, often called 
themes, based on children’s predictable interests, but they are also broad 
enough to connect many different experiences and achieve multiple goals. 
Such themes usually include such topics as weather, animals, or construc-
tion. Comprehensive curricula are sometimes integrated curricula, in which 
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one topic or experience is designed to meet goals across subject matter 
areas, such as reading a book that includes scientific information. Some 
comprehensive curricula have a limited number of themes, six to nine, 
allowing for more in-depth attention to the topic. Others change the topic 
weekly. In the past (and today as well), teacher-developed preschool “cur-
riculum” was often theme-based, consisting of a series of activities related 
to the changing seasons, holidays, and events in children’s lives, such as 
visits to the firehouse.

Often newly available curriculum resources are designed to provide 
instruction focusing on language, literacy, and/or mathematics. In some of 
these resources, learning and instruction are devoted to a single content 
domain, such as mathematics or literacy skills. Sometimes, a curriculum 
resource focuses on only one aspect of one domain rather than on an entire 
domain, such as phonological awareness or social-emotional development. 
These resources require teachers to figure out how to offer a coherent cur-
riculum that covers all important learning goals.

Little research is available on the extent to which preschool programs 
use specific curriculum. The six-state study of prekindergarten conducted 
by the National Center for Early Development and Learning provides some 
evidence about curriculum use in state-funded preschool programs (Early 
et al., 2005). Only 4 percent of teachers reported having no curriculum, 14 
percent used a locally developed curriculum, and 9 percent used a state cur-
riculum. The most widely used curricula are High/Scope, with 38 percent of 
classrooms, and Creative Curriculum, accounting for 19 percent (National 
Center for Early Development and Learning Prekindergarten Study, 2005). 
These two curricula are also the most widely used in Head Start programs 
(U.S. Department of Health and Human Services, 2006).

There is increasing agreement over many early childhood teaching 
practices, often called developmentally appropriate practice (see previous 
section on effective instruction; see also Copple and Bredekamp, 2006, 
2009). Developmentally appropriate practice as defined by the National 
Association for the Education of Young Children (Copple and Bredekamp, 
2009) calls for teachers to make decisions that are informed by knowledge 
of child development and learning, knowledge about individual children, 
and knowledge about the social and cultural context in which they live. The 
concept is that teachers adapt the curriculum and teaching strategies for 
the age, experience, and abilities of individual children to help them make 
learning progress.

Despite the support for developmentally appropriate practice in the 
field, there is less acceptance of the need for a written curriculum, especially 
if that curriculum provides a planned sequence of teaching and learning op-
portunities (Lee and Ginsburg, 2007). Yet such a curriculum organized by 
research-based teaching-learning paths, such as those described in Chapters 
5 and 6, or at least some learning path organization of the mathematics 
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activities over the year, is needed to ensure that all children have a chance 
to learn the topics in the learning path. Such systematic opportunities are 
needed to help improve mathematical outcomes for all young children.

Mathematics Curriculum

A limited amount of research is available on the effectiveness of specific 
mathematics curricula or curricular approaches. As described earlier, most 
early childhood programs do not include primary mathematics experiences 
or focused mathematics time but rather rely on integrated mathematics 
experiences in which mathematics is a secondary goal and often incidental 
(Preschool Curriculum Evaluation Research Consortium, 2008). However, 
incidental mathematics instruction appears to be less effective than activi-
ties with a primary focus on mathematics, although this evidence is only 
correlational (Starkey et al., 2006).

In addition, reliance on incidental or integrated mathematics may con-
tribute to the fact that little time is spent on math. For example, in the 
Preschool Curriculum Evaluation Research (PCER) Study, conducted by 
the U.S. Department of Education, a literacy-oriented curriculum (Bright 
Beginnings, available at http://www.brightbeginningsinc.org/) and a devel-
opmentally focused one (Creative Curriculum, available at http://www.
teachingstrategies.com/) engendered no more mathematics instruction than 
a control group (Aydogan et al., 2005). Other research (Farran et al., 2007) 
found a negligible time devoted to mathematics in a literacy-oriented com-
prehensive curriculum.

It is important to note, however, that in response to changing stan-
dards and current research, the developers of Creative Curriculum have 
recently added a mathematics component to their approach (Copley, Jones, 
and Dighe, 2007). In addition, the High/Scope curriculum (Hohmann and 
 Weikart, 2002) is developing a more challenging focused mathematics com-
ponent (Schweinhart, 2007).

Large effect sizes support the strategy of designing a mathematics cur-
riculum built on comprehensive research-based principles, including an 
emphasis on hypothesized teaching-learning paths (Clarke, Clarke, and 
Horne, 2006; Clements and Sarama, 2007b, 2008a; Thomas and Ward, 
2001; Wright et al., 2002). Most of these studies also emphasized key devel-
opmental milestones in the main teaching-learning paths, promoting deep, 
lasting learning of critical mathematical concepts and skills.

Teaching-learning paths or learning trajectories are useful instruc-
tional, as well as theoretical, constructs (Bredekamp, 2004; Clements and 
Sarama, 2004; Simon, 1995; Smith et al., 2006). The developmental pro-
gressions—levels of understanding and skill, each more sophisticated than 
the last—are essential for high-quality teaching based on understanding 
both mathematics and learning. Early childhood teachers’ knowledge of 
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young children’s mathematical development is related to their students’ 
achievement (Carpenter et al., 1988; Peterson, Carpenter, and Fennema, 
1989). In one study, the few teachers that actually led in-depth discussions 
in reform mathematics classrooms saw themselves not as moving through 
a curriculum, but as helping students move through levels of understanding 
(Fuson, Carroll, and Drueck, 2000). Furthermore, research suggests that 
professional development focused on developmental progressions increases 
not only teachers’ professional knowledge but also their students’ motiva-
tion and achievement (Clarke, 2004; Clarke et al., 2001, 2002; Fennema 
et al., 1996; Kühne, van den Heuvel-Panhulzen, and Ensor, 2005; Thomas 
and Ward, 2001; Wright et al., 2002). Thus, teaching-learning paths can 
facilitate developmentally appropriate teaching and learning for all children 
(see Brown et al., 1995).

A few words of caution are in order in interpreting findings about 
mathematics curriculum research. In the early childhood context, random-
ized control trials in mathematics may tend to overstate effect sizes because 
teaching some mathematics will always be more effective than teaching no 
or almost no mathematics (which is usually what the control classrooms 
are doing). Comparing the large effect sizes of the mathematics PCER study 
(Starkey et al., 2006) with the results of no significant differences for most 
of the literacy PCER studies does not mean that mathematics curricula are 
effective while literacy curricula are not. Preschools have had a decade of 
focus on literacy, so the control groups in those studies were doing a lot of 
literacy as well as the experimental groups. Curricular research does have 
great potential to advance understanding of effective instructional strate-
gies, but only if this research is conducted with this explicit goal in mind. 
The inclusion of observational measures, both of fidelity to the curriculum 
and generalized instructional processes, greatly enhances the ability of the 
research to speak to specific teaching strategies that may be most important 
for student learning.

For example, Clements and Sarama (2008a) included extensive obser-
vation using the Classroom Observation of Early Mathematics Environment 
and Teaching (COEMET) and Fidelity of Implementation during a ran-
domized control trial of two mathematics curricula—Building Blocks and 
Preschool Mathematics Curriculum (PMC; Klein, Starkey, and Ramirez, 
2002)—and a control condition. The results indicate that research-based 
mathematics preschool curricula can be implemented with good fidelity, if 
teachers are provided ongoing training and support.

Using data from the COEMET the researchers identified instructional 
strategies that significantly predicted gains in children’s mathematical knowl-
edge over the course of the year: (1) the percentage of time the teacher was 
actively engaged in activities, (2) the degree to which the teacher built on and 
elaborated children’s mathematical ideas and strategies, and (3) the degree to 
which the teacher facilitated children’s responding. Examples are provided 
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in Box 7-5. In addition, the researchers’ inclusion of multiple curricula also 
facilitates generalization beyond the effects of a specific curriculum to the 
broader approaches that may be embedded in it.

The ability of curricular research to inform effective practice would also 
be enhanced if individual curricula more clearly defined the instructional 
approaches embedded in them. Often curricula distinguish themselves in 
terms of content (e.g., covering geometry or not) and generalized approach 
(e.g., whole-group versus small-group instruction) more than in the instruc-
tional strategies that are endorsed and supported in the activities. Thus, any 
findings that one curriculum is more effective than another provides little 
knowledge about specific teaching strategies that may be useful.

Improving Mathematics Outcomes for Children in Poverty

The limited amount of time devoted to the subject of mathematics may 
account for why Head Start children make little or no gain in mathematics. 
For example, using randomized assignment, the Head Start Impact Study 
found no significant impacts for the early mathematics skills of 3- or 4-
year-olds (U.S. Department of Health and Human Services, 2005). Other 
examples include control groups from experiments (Clements and Sarama, 
2007b; Clements and Lewis, 2009; Starkey et al., 2006). The control group 
in one study, for example, made small gains in number, but little or no 
gain in geometry (Clements and Sarama, 2007b) and Head Start children 
made no significant gain in any area of mathematics during the school year 
(control classrooms continued using their school’s mathematics activities, 
which were informed by a mixture of influences ranging from commercially 
published curricula to homegrown materials based on state standards).

Research demonstrates that interventions with a primary focus on mathe-
matics have the potential to increase the mathematics achievement of children 
living in poverty and those with special needs (Campbell and Silver, 1999; 
Clements and Lewis, 2009; Fuson, Smith, and Lo Cicero, 1997; Griffin, 
2004; Griffin, Case, and Capodilupo, 1995; Ramey and Ramey, 1998), 
which can be sustained into first (Magnuson et al., 2004) to third grade 
(Gamel-McCormick and Amsden, 2002). For example, both the Building 
Blocks and Big Math for Little Kids curricula significantly and substantially 
increase the mathematical knowledge of children from low-income families 
(e.g., Clements and Lewis, 2009; Clements and Sarama, 2007b, 2008a). The 
success, even in comparison to other curricula, is probably due to the shared 
core of learning trajectories (teaching-learning paths) emphasized in the cur-
riculum and the professional development that ensures that teachers spend 
time teaching appropriate mathematics topics during the year.

Another example, the Rightstart program5 (Griffin, Case, and Siegler, 

5 Now published as Number Worlds (Griffin, 2004, 2007).
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BOX 7-5 
Examples of Low-Quality and High-

Quality Mathematics Teaching

1.	The	teacher	was	actively	engaged.

Consider a situation in which the teacher has put out a mathematics center with 
play dough.

A	nonengaged	teacher	talks	for	
several	minutes	exclusively	to	another	
adult	in	the	room.

An	engaged	teacher	works	with	several	
children	at	the	center	until	she	observes	
they	“have	the	idea”	of	the	activity.	
She	keeps	her	eye	on	the	center	and	
encourages	children	to	keep	building.

Another	works	with	children	in	another	
area	of	the	room,	but	neither	she	nor	
the	aide	visits	the	math	center.

In	another	room,	the	teacher	works	with	
children	in	another	area	of	the	room,	
while	the	aide	visits	the	center	and	
helps	or	acknowledges	the	children’s	
mathematics	work.

2.	The	teacher	built	on	and	elaborated	children’s	mathematical	ideas	and	
strategies.

Consider a situation in which children are to put some dinosaurs on a play scene 
and describe what they did. One child put out dinosaurs, but then just pointed.

A	teacher	who	did	not	build	on	or	
elaborate	children’s	ideas,	merely	
says,	“OK.”

A	teacher	who	does	build	on	or	elabo-
rate	children’s	ideas	says,	“What	do	
you	have	there?”	The	child	does	not	
respond.

Another	teacher	asks,	“What	are	the	
dinosaurs	doing?”	“Fighting!”	says	the	
child,	as	he	picks	up	the	dinosaurs	
and	loudly	demonstrates	the	fighting.	
The	teacher	says,	“That’s	enough	
of	that!”	excuses	this	child	and	calls	
another	child	to	the	activity.

“What	are	these	two	dinosaurs	doing?”	
“Fighting.”	“How	many	are	in	your	
pond?”	“Two.”	“What	are	they	going	to	
see?	On	the	hill	here?	“A	T-rex.	One	
T-rex.”	“Wow!	Four	dinosaurs,	two	here	
and	two	on	the	pond,	are	seeing	that	
Tyrannosaurus	Rex.	I’ll	bet	they	are	
scared!”

3.	The	teacher	facilitated	children’s	responding.

Consider a situation in which the teacher asks one child to figure out how many 
1 more than 3 is.

One	teacher	who	does	not	facilitate	
children’s	responding	says	to	a	child	
who	does	not	answer,	“Someone	else	
can	answer.”	Once	another	child	gave	
the	correct	answer	the	teacher	moves	
on	to	the	next	task.

A	teacher	who	does	facilitate	children’s	
responding	says,	“Can	you	show	me	3	
to	get	started?”	The	child	says	“four.”	
The	teacher	asks,	“Can	you	teach	us	
how	you	did	that?”	After	the	child	ex-
plains,	the	teacher	asks,	“Did	anybody	
do	it	a	different	way?”

SOURCE:	COEMET.
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1994), which uses small-group games and active experiences with different 
models of number, led to substantial improvement in children’s knowledge 
of number. Children in the program were better able to employ reasonable 
problem-solving strategies and solve arithmetic problems even more dif-
ficult than those in the program. (Core Knowledge includes a mathematics 
sequence developed by Sharon Griffin based on this work.)

Program children also passed five far-transfer tests that were hypoth-
esized to depend on similar cognitive structures (e.g., balance beam, time, 
money). The foundation these children received supported their learning of 
new, more complex mathematics through Grade 1. In a 3-year longitudinal 
study in which children received consistent experiences from kindergarten 
through the primary grades, children gained and surpassed both a second 
low-income group and a mixed-income group that showed a higher ini-
tial level of performance and attended a magnet school with an enriched 
mathematics curriculum. The children also compared favorably with high-
income groups from China and Japan (Case, Griffin, and Kelly, 1999). On 
a more limited scale, a study of 8 classrooms with 112 children found that 
a 6-week focused mathematics intervention was successful in improving 
Head Start children’s mathematical skills as well as their interest in math-
ematics (Arnold et al., 2002). Teachers in experimental classrooms were 
provided with a choice of math-relevant activities to use during circle time, 
with small groups, and during routines and transitions, while the control 
classrooms did typical activities. Experimental group children scored signifi-
cantly higher on the Test of Early Mathematics Ability (TEMA-2) and also 
reported that they enjoyed mathematics more than the control children. 
Teachers, too, reported that they increased their knowledge and enjoyment 
in implementing mathematics activities. Notably, boys showed substantial 
gains compared with girls, and African American and Puerto Rican children 
gained more than white children. Like other mathematics interventions, this 
study includes several variables, making it impossible to determine which 
particular teaching and learning experiences make the most difference to 
children. At the very least, the study indicates once again that more inten-
tional teaching of mathematics leads to better mathematics outcomes.

PRINCIPLES TO GUIDE MATHEMATICS 
CURRICULUM AND PEDAGOGY

Based on an extensive review of research on the current state of early 
mathematics education and effective practices, we present a set of principles 
to guide early childhood mathematics curriculum and instruction. Research 
points specifically to the following key indicators of an effective mathemat-
ics program at the preschool level (e.g., Clarke et al., 2002; Clements and 
Sarama, 2007b, 2008a; Thomson et al., 2005; Wood and Frid, 2005):
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• Uses research to specify a comprehensive set of cognitive concepts, 
processes, and teaching-learning paths to design developmentally 
sequenced activities and help teachers collect data by observation 
and interaction with children and use those data to modify planning 
and teaching strategies. Tasks are sequenced, but teachers need to 
adapt for particular students’ conceptual development rather than 
rigidly following a prescribed curriculum.

• Emphasizes mathematization of children’s experiences, including 
redescribing (i.e., with more specific and often mathematical lan-
guage), reorganizing, abstracting, generalizing, reflecting on, and 
giving language to what is first understood on an intuitive, informal 
level (premathematical foundations).

• Builds an awareness of the need for direct, formal development of 
children’s concepts in mathematics together with an instructional 
focus on mathematics. This includes explicit plans for mathemat-
ics as a separate area of the program and ability to plan based on 
teaching-learning paths.

• Uses a variety of instructional methods, such as a combination 
of small groups, the whole group, play, routines and transitions, 
and computer activities. Uses teachable moments as they occur—in 
general, has the ability to make connections between mathematical 
ideas, between activities, between mathematics and other subjects, 
and everyday life.

• Uses an “assisted performance” approach to instruction that sup-
ports problem solving and inquiry processes in mathematics ac-
tivities. Uses a variety of question types to encourage children to 
explain their thinking and to listen attentively to individual children 
and understand their level of thinking along mathematical teaching-
learning paths.

• Engages and focuses children’s thinking through introductions and 
activities. Draws out key mathematical ideas at the conclusion of an 
activity or period of study and helps children consolidate and con-
nect their knowledge.

• Across the program, teachers show an interest in mathematics and 
have high but realistic expectations and clear goals and an ability to 
communicate these clearly. Engages and cultivates children’s interests 
and motivation to learn mathematics.

• Uses classroom-based formative assessment to make adjustments 
to teachers’ instructional practices so that they better under-
stand children’s learning needs and facilitate their mathematical 
development.
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SUMMARY

Young children in early childhood classrooms do not spend much time 
engaged in mathematics content. Time spent on mathematics increases 
somewhat in kindergarten. The time that is spent engaged in mathematics is 
typically of low instructional quality (La Paro et al., 2008) and, more often 
than not, is conducted as a part of whole-class activities or embedded in 
center time or free play. Early childhood teachers rarely teach mathematics 
in small groups. They report that they are much more likely to use embed-
ded mathematical strategies or do the calendar, which they consider to be 
teaching mathematics, rather than provide experiences with a primary focus 
on mathematics in which they scaffold children’s progress along important 
mathematics teaching-learning paths. Formative assessment has consider-
able potential to provide teachers with meaningful methods for assessing 
children’s mathematical knowledge and improving their instruction to meet 
children’s needs.

On a more optimistic note, the early childhood education field is ac-
tively working to improve the teaching of mathematics. The National As-
sociation for the Education of Young Children and the National Council 
of Teachers of Mathematics (2002) issued a joint position statement calling 
for more and better mathematics curriculum and teaching in early child-
hood programs. Head Start has launched a new mathematics professional 
development initiative. In addition, the reauthorization of Head Start calls 
for research-based curriculum and practices. The time is right to enhance 
young children’s mathematics experiences not only to improve school readi-
ness, but also to lay a foundation for lifelong understanding and enjoyment 
of mathematics. The challenges as well as the advances in research and 
policies aimed at improving young children’s mathematics learning speak 
to the need for extensive professional development around young children’s 
mathematics—the focus of the next chapter.
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The Early Childhood Workforce 
and Its Professional Development

It is often said that the quality of any institution is based on the 
quality of its personnel. This is especially true of the array of institu-
tions and programs that serve young children. The adults—early childhood 
 teachers—who directly support the academic/intellectual, social, emotional, 
and physical development of preschoolers in the United States are pivotal 
to children’s short-term development and their long-term outcomes. Early 
childhood teachers are an essential ingredient in achieving the intentions of 
this report, notably improved attention to and outcomes in early childhood 
mathematics. For these reasons, we address the early childhood workforce 
and their professional development.

Terminology regarding the early childhood workforce is often used 
inconsistently (Kagan, Kauerz, and Tarrant, 2008). In this discussion, the 
following terms are used:

• Early childhood education (ECE) teachers or the ECE teaching work-
force includes all personnel whose primary role is to provide direct 
instructional services for young children. Included in this category 
are lead teachers, assistant teachers, aides, and family child care 
(FCC) providers.

• ECE workforce includes those who carry out both instructional and 
noninstructional roles in early childhood education settings. Thus, 
the term workforce is an inclusive one that embraces teachers, others 
who work in early childhood education settings and whose primary 
responsibility is not instructional (e.g., administrators), and indi-
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viduals who work in settings that support early childhood education 
(e.g., resource and referral coordinators).

In this chapter, we begin by discussing the nature of the current early 
childhood workforce. We first present information on this workforce in 
general, discussing characteristics about the teachers themselves, includ-
ing age, gender, ethnicity, educational experience, and background and 
key variables that influence their work, including compensation, turnover, 
work settings, and beliefs. We then turn to a more specific discussion of 
the early childhood workforce from a mathematical perspective. In the sec-
ond section, we discuss the nature of the professional development of the 
workforce, first addressing the professional development of early childhood 
teachers in general and then turning to mathematics-specific professional 
development.

BACKGROUND ON THE WORKFORCE

Demographic Characteristics

Over 50 percent of U.S. families with children under the age of 5 rely 
on nonparental care (Chernoff et al., 2007), and thus the ECE workforce 
is responsible for the care and education of large numbers of the nation’s 
young children. The early childhood workforce is fairly large, compris-
ing 2.3 million individuals (Burton et al., 2002) and dispersed: About 24 
percent work in centers, 28 percent in family child care, and 48 percent in 
informal family, friend, and neighbor (FFN) settings (Burton et al., 2002). 
It is important to note that although most early childhood care providers 
work in FFN settings the majority of children attend center-based programs 
in which the child-to-teacher ratio is higher (Burton et al., 2002). The focus 
of this section is on teachers in center-based and FCC settings.

According to national averages, the ECE teaching workforce is mainly 
comprised of white women in their late 30s and 40s (Saluja, Early, and 
Clifford, 2002); however, race/ethnicity varies across state and program 
type (see Table 8-1 for a breakdown of early childhood educators by race/
ethnicity). For example, the Head Start and home-based early child care 
teaching workforce is more ethnically balanced than the prekindergarten 
workforce (Early et al., 2005; Hart and Schumacher, 2005). In addition, in 
certain parts of the country, for example, Alameda County, California, the 
early childhood education and care workforce is more ethnically diverse. 
Three-quarters of the family child care centers there are staffed by women 
of color (Whitebook and Bellm, 2004). Also, in the population as a whole, 
there are increasingly more children who speak English as a second lan-
guage (as cited in Hart and Schumacher, 2005), and thus there is a need for 
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a more linguistically and ethnically/racially diverse ECE workforce (Howes, 
James, and Ritchie, 2003).

Educational Experience and Background

ECE teachers are a diverse group of individuals, with some having for-
mal education and holding degrees from institutions of higher education or 
community colleges and others receiving credentials of competence offered 
by the profession. Some have only very limited training that is delivered on 
the job. Not surprisingly, the amount of formal education and credentials 
varies by program type; prekindergarten programs generally have the high-
est percentage of teachers with degrees, while home-based or FCC providers 
have the lowest levels of formal education (Kagan et al., 2008). Table 8-2 
shows the breakdown of percentages by program type. The specific nature 
of these variations and their relationship to teaching quality and effective-
ness are elaborated in the section on the professional development of the 
workforce.

Compensation

Compensation, defined as a combination of annual salary or hourly 
wages and benefits (e.g., health insurance, paid vacation, sick leave, retire-
ment plan), is quite low for some segments of the early childhood work-
force. In the United States, the average annual salary for preschool teachers, 
one group of early childhood educators, is $25,800; for child care workers 
including FCC providers, it is $19,670 (Bureau of Labor Statistics, 2007); 
and for Head Start teachers, it is $24,608 (Hamm, 2006). Distinctions exist 
in the salaries of individuals according to the settings in which they work.

A national survey conducted by the Bureau of Labor Statistics (BLS) 

TABLE 8-1 Early Childhood Educators by Race/Ethnicity (percentage)

Program Type

Race/Ethnicity

White Black Latino Asian Other

Prekindergarten 64 13 15 2 8
Head Start 36 28 24 2 —
Family child care 20 27 26 23 —

NOTE: Family child care from Layzer and Goodson (2006); Head Start from Hart and 
Schumacher (2005); prekindergarten by Early et al. (2005). Prekindergarten refers to school 
or center-based programs that serve 4-year-olds, have an explicit purpose of improving school 
readiness, and are funded fully or partially by the state.
SOURCE: Kagan et al. (2008).
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characterizes the field in terms of two categories: child care workers and 
preschool teachers. Child care workers are adults who primarily perform 
such duties as feeding, dressing, and overseeing the play of children, and 
preschool teachers provide a more educational experience for the children 
in their care. Using these definitions, child care workers were near the bot-
tom of the compensation ladder, earning more than only 22 of the 820 
occupations that were assessed by BLS in 2004—their earned incomes 
were within 5 percent of short-order cooks and parking lot attendants 
and considerably less than preschool teachers (Center for the Child Care 
Workforce, 2006).

While there is little dispute regarding the wide salary differences that 
exist among early childhood teachers, most observers suggest that compen-
sation differs according to the particular type of program and its attendant 
required credentials. For example, preschool teachers who work in settings 
in which teacher certification is required command higher salaries and 
compensation packages than teachers who work in settings in which lower 
levels or no certification is required. Setting and its attendant requirements 
are not the only variable that influences compensation; it also varies by geo-
graphic region, with early childhood educators in southern states receiving 
the lowest levels of compensation (Center for the Child Care Workforce, 
2006).

In addition to low wages, many ECE teachers do not receive health 
insurance benefits from their employers. Specifically, 28 percent of center-
based early childhood educators received health insurance benefits from 
their employer between 2002 and 2004, and 21 percent of ECE teachers 
reported that they had no health insurance during this time (Herzenberg, 

TABLE 8-2 Level of Formal Education and Training of Early Childhood 
Education and Care Workforce (percentage)

Program Type

Level of Education and/or Training

High 
School 
or Less

Associate’s 
Degree/Some 
College

B.A. or 
More

Child 
Development 
Associate

State License or 
Endorsement

Prekindergarten 13 14 73 23 57
Head Start 31 33 36 22 N/A
Center-based 30 41 30 18 44
Home-based (FCC) 56 32 11 3 7

NOTE: Prekindergarten data from Gilliam and Marchesseault (2005); Head Start data from 
Hamm (2006); center-based data (includes teachers and directors) and home-based data on 
formal education are from Herzenberg, Price, and Bradley (2005), center-based and family 
child care data on credentials from Saluja, Early, and Clifford (2002).
SOURCE: Kagan et al. (2008).
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Price, and Bradley, 2005).1 Lack of health insurance is a significant issue; it 
may influence early childhood educators’ interactions at work, their overall 
financial status, and thus their ability to remain in the field over time, fuel-
ing heavy personnel turnover rates.

Stability and Turnover

The turnover of early childhood teachers is quite high in some settings. 
A longitudinal study in California by Whitebook and colleagues (2001) 
found that 76 percent of the teachers employed by centers in 1996 and 82 
percent of teachers employed by centers in 1994 had left these jobs by 2000 
(Whitebook et al., 2001). Such high turnover rates have often been associ-
ated with low compensation (Whitebook and Sakai, 2003). For example, 
Whitebook and colleagues (2001) found that early childhood educators re-
ceiving higher than average wages were more likely to remain in their jobs, 
and those who left the field were more likely to go to higher paying jobs. 
Wage levels are often directly associated with the program type or sector in 
which the individual is employed.

One national study showed that, on average, center-based teachers 
were in their current programs for 6.8 years, teachers in programs in pub-
lic schools and religious settings were working in their programs for 7.8 
years, and teachers in for-profit centers were in their programs for 5.6 years 
(Saluja, Early, and Clifford, 2002). Confirming these data, a five-state study 
found that publicly operated prekindergarten programs were found to have 
lower turnover rates than privately operated programs (Bellm et al., 2002). 
On average, publicly operated prekindergarten programs offered higher 
wages than privately operated programs (Gilliam and Marchesseault, 2005), 
which may be an explanation for the difference in turnover. Moreover, 
when ECE teachers are compared with K-12 teachers, the salaries for K-12 
teachers are significantly higher (Kagan et al., 2008) and turnover is lower 
(Provasnik and Dorfman, 2005).

Teacher turnover is relevant for all students, and it is particularly 
important for young children because of the impact on their development 
and learning. High levels of unpredictable turnover have been linked to 
poorer developmental outcomes for children, as well as to lower quality 
service (Helburn, 1995; Howes and Hamilton, 1993; Howes, Phillips, and 
 Whitebook, 1992; Phillips et al., 2001; Whitebook, Sakai, and Howes, 
1997, as cited in Kagan et al., 2008).

1 Although health insurance data were not collected for the remaining 51 percent of early 
childhood teachers, some probably received health insurance through a spouse when a spouse 
was present and had health coverage, purchased it privately, or purchased it through Medicaid 
(Mark Price, personal communication, January 12, 2009).
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For example, one study, The Cost, Quality and Child Outcomes in 
Child Care Centers (Cost, Quality, and Child Outcomes Study Team, 1995), 
found that higher quality programs, in which children demonstrated more 
advanced language and premathematical skills, were associated with lower 
turnover rates. Furthermore, the children showed better nonacademic out-
comes than did children in high turnover programs. The children had more 
positive self-concepts, better relations with their teachers, and demonstrated 
more advanced social behavior and more positive attitudes toward child 
care situations. The effects of program quality are obvious for children of 
all socioeconomic backgrounds, but children from low-income backgrounds 
are especially influenced by the quality (or lack thereof) of their child care 
(Helburn, 1995). Finally, turnover is important in early childhood settings 
because many ECE teachers who leave the field are replaced by individuals 
with less training and experience; thus, turnover has long-term effects on 
teacher and program quality.

While high turnover is often associated with instability and poorer 
outcomes for children, it is important to note that turnover is not always 
a negative factor (Kagan et al., 2008; Whitebook and Sakai, 2003). It 
may be beneficial when individuals who enter the early childhood educa-
tion field and find that it is a poor fit for their skills or occupational goals 
leave (Whitebook and Sakai, 2003). Also, many studies do not distinguish 
between job turnover, which is defined as the rate at which teachers leave 
programs to take new positions in the early childhood education field, and 
occupational turnover, which is defined as the rate at which teachers leave 
programs to retire or enter a new field of work (Kagan et al., 2008). Clearly, 
more data are needed on turnover in the early childhood field.

The Work Environment

In any industry, the environment in which one works is likely to influ-
ence one’s on-the-job attitude and performance. Work environment is de-
fined as the physical setting, the reward system, clarity about expectations 
and roles, agency in decision making, supervisor support, and communi-
cation (Hatch, 2006; Stremmel, Benson, and Powell, 1993; Whitebook, 
Howes, and Phillips, 1990). While the measures of work environment 
vary for different studies, the research shows that the work environment 
of early childhood educators plays a role in teachers’ quality and effec-
tiveness (Kagan et al., 2008). For example, the Child Care Services Asso-
ciation (2003) found that 22 percent of preschool teachers throughout 
North Carolina planned to leave the field within three years, yet only half 
as many teachers who worked in supportive environments reported hav-
ing the same plans. The supports that were presumably related to more 
positive work environments include: (1) orientation, (2) written job de-
scriptions, (3) written personnel policies, (4) paid education and training 
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expenses, (5) paid breaks, (6) compensatory time for training, and (7) paid 
preparation/planning time (Child Care Services Association, 2003). Not 
surprisingly, teachers were more likely to stay in their positions when they 
understood the responsibilities of their position and the expectations that 
their supervisors and colleagues had of them, and there were improvements 
in compensation.

Interestingly, improvements in the work environment have also been 
related to better psychological functioning, as defined by less emotional 
exhaustion (Stremmel, Benson, and Powell, 1993). Teachers are required 
to interact closely with children (Kagan et al., 2008); however, those who 
show lower levels of emotional well-being are less likely to spend time en-
gaged with children (Hamre and Pianta, 2004). Children who have teachers 
who are less engaged may have fewer opportunities to learn from teacher-
guided situations.

The supervision and leadership that are provided to ECE teachers also 
make a difference in the quality of the work environment and subsequently 
in teachers’ quality and effectiveness (Kagan et al., 2008). Supervisors must 
have the management skills and leadership abilities necessary to support 
early childhood educators. Moreover, they must support teaching staff, 
but they also need support to continue to develop positive management 
styles and leadership abilities for themselves. Research by Jorde-Bloom 
and Sheerer (1992) suggests that professional development programs for 
supervisory staff improve the overall workplace climate and classroom 
quality. Fostering these skills in the supervisory staff has the potential to 
positively impact children’s learning through classroom quality and work-
place climate.

Teachers’ Beliefs About Early Childhood Education

Like the variables discussed above, early childhood educators’ beliefs 
and values are important to understand. Teachers’ beliefs and values about 
teaching and learning not only shape classroom practices (Fang, 1996; 
Kagan, 1992; Stipek et al., 2001), but also serve as a filter through which 
meaning is derived. As such, values and beliefs have a powerful influence 
on educational change and innovation. Attempting changes in pedagogy 
without considering teachers’ pedagogical beliefs and values about educa-
tion may lead to resistance in implementation of a new practice if teachers 
do not agree with the underlying educational value (Lee and Ginsburg, 
2007b; Ryan, 2004). Thus, any effort to change educators’ classroom prac-
tices must include consideration of how those teachers view their roles, the 
children they teach, and the purpose of the setting in which their interac-
tions take place.

Historically, the field of early childhood education has placed great 
emphasis on supporting children’s social and emotional development, with 
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somewhat less of an emphasis on academic learning as an outcome of ex-
periences in ECE settings (Kowalski, Pretti-Frontczak, and Johnson, 2001). 
Academic subjects were believed to be less important at this age because 
young children should investigate and explore their interests so that they 
 develop a love of learning (Lee, 2006). However, in the past decade, there 
has been a groundswell of focus on academic learning as a legitimate, desir-
able, and appropriate outcome of preschool enrollment (particularly in pub-
licly funded programs, such as Head Start or state-funded prekindergarten). 
This movement, challenging teachers’ conventional beliefs, has created 
pressure on early childhood education systems and personnel to address 
academic achievement more focally and intentionally.

Preschool programs that provide children with social, emotional, physi-
cal, and academic learning opportunities are ideal learning environments. 
Educating the “whole child,” including social and emotional development, 
and providing preschool children with opportunities to engage in develop-
mentally appropriate mathematics2 is essential to children’s immediate and 
later school success (Duncan et al., 2007; National Association for the Edu-
cation of Young Children and National Council of Teachers of Mathemat-
ics, 2002; National Mathematics Advisory Panel, 2008). It is important to 
note, in this regard, that the third edition of the National Association for 
the Education of Young Children’s (NAEYC) (2009) guidelines for devel-
opmentally appropriate practice emphasize that pre-academic and cogni-
tive skills, including those in mathematics, are essential to developmentally 
appropriate instruction.

Teachers’ educational goals and pedagogical beliefs are also influenced 
by the backgrounds and characteristics of the children themselves. For 
example, socioeconomic status (SES) has been found to be related to ECE 
teachers’ instructional practices (Lee and Ginsburg, 2007a, 2007b; Stipek 
and Byler, 1997). Children from low-SES backgrounds are often behind 
their more affluent peers in mathematics achievement as early as kinder-
garten (Clements, Sarama, and Gerber, 2005; Denton and West, 2002; 
Griffin and Case, 1997; Jordan, Huttenlocher, and Levine, 1994; Lee and 
Burkam, 2002; National Research Council, 2001b; Saxe, Guberman, and 
Gearhart, 1987; Starkey and Klein, 1992, 2008; Stipek and Ryan, 1997), 
and awareness of this disparity may influence teachers’ educational goals, 
beliefs, and instructional practices with children from economically disad-
vantaged backgrounds. Children coming from low-SES homes, although 
increasingly enrolled in and benefiting from early childhood education, 
also require more intensive and appropriate educational interventions in 

2 Developmentally appropriate mathematics includes a child-centered and positive non-
evaluative mathematics environment, developmentally appropriate mathematics activities 
and manipulatives, and authentic mathematics assessment (as cited in Lee, 2005).
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order to perform at levels consistent with their more advantaged and 
skilled peers (Hamre and Pianta, 2005). In short, less advantaged children 
need programs that actually accelerate learning if they are to enter school 
not behind at the start. However, preschool and kindergarten teachers of 
low-SES children rate memorizing facts and rote tasks (procedural knowl-
edge) as more important educational goals than problem solving and tasks 
involving reasoning (conceptual knowledge), and they tend to agree with a 
more basic skills teaching orientation than teachers of middle-SES children 
(Stipek and Byler, 1997).

THE EARLY CHILDHOOD WORKFORCE AND MATHEMATICS

The teaching of mathematics has been considered a part of the early 
childhood educators’ portfolio, along with many other developmental and 
disciplinary domains (e.g., social and emotional development, physical de-
velopment, literacy, social studies) that they must address. To understand 
how the early childhood workforce currently views and addresses math-
ematics, we examine early childhood teachers’ beliefs about mathematics, 
their mathematics knowledge, and how these beliefs and knowledge actu-
ally impact what they do in the classroom.

Teachers’ Values and Beliefs About Mathematics 
Education in Early Childhood

Generally, early childhood teachers believe that social-emotional and 
physical development are more important to young children’s development 
and learning than academic activities, including mathematics (Ginsburg 
et al., 2006a; Lin, Lawrence, and Gorrell, 2003; Piotrkowski, Botsko, 
and Matthews, 2001). In a recent review of the research, Ginsburg and 
colleagues (2008) found that preschool teachers report social-emotional 
development, literacy, and then mathematics—in that order—as important 
educational goals for young children to achieve.

A second set of beliefs focuses on the nature of mathematics instruction. 
Early childhood educators generally believe that mathematics education 
should focus on numeracy and arithmetic through some direct instruction 
(Lee and Ginsburg, 2007b). They also tend to believe that young children 
should engage in games and other activities in which mathematics learn-
ing is fun and involves interesting toys or materials in small groups and 
that mathematics learning should not be highly demanding, nor should it 
be pushed on young children before they are “ready” (Lee and Ginsburg, 
2007b).

Finally, a third set of beliefs regarding instructional practice is driven by 
children’s characteristics, particularly SES. Research examining ECE teach-
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ers’ beliefs about instructional practices as a function of SES is a nascent 
area; however, recent studies shed light on how this characteristic shapes 
beliefs about teaching practices. For example, one study showed that early 
childhood teachers of children from low-SES backgrounds believed that 
mathematics instruction was an excellent way of preparing children for kin-
dergarten and that children should engage in mathematics activities, even if 
they initially showed little or no interest (Lee and Ginsburg, 2007b). Con-
versely, teachers of middle-SES prekindergarten children were more likely to 
state that, instead of having an academic focus, prekindergarten education 
should be child-centered and child-initiated and encourage children’s social-
emotional development (Lee, 2006; Lee and Ginsburg, 2007b). In large 
part, this belief was in response to the notion that middle-SES parents put 
significant academic pressure on their children at home (Lee and Ginsburg, 
2007b). It should be noted that, while SES-related differences were found 
in both early childhood educators’ beliefs about instructional practices and 
their educational goals, the field of early childhood education tends to stress 
social-emotional development rather than academic subjects.

There are multiple reasons that early childhood teachers may not be 
inclined to focus on mathematics. One explanation is related to ECE poli-
cies that put a premium on early literacy at the expense of other subject 
areas (which is discussed later in this chapter). Another reason stems from 
the education and training many ECE teachers receive, which has histori-
cally placed more emphasis on social-emotional development. Specifically, 
some researchers suggest that this focus on social-emotional development 
is rooted in misconceptions or limited knowledge of the young children’s 
developmental capacities. For example, early childhood educators’ beliefs 
that young children are too cognitively immature for mathematics learning 
may be based on Piagetian theory, which states that young children in the 
preoperational stage (ages 2 to 6) are not likely to use or understand ab-
stract ideas to make sense of their experiences (Ginsburg, Pappas, and Seo, 
2001; Lee and Ginsburg, 2007b). However, Gelman and Gallistel (1986) 
found that young children do think abstractly in regard to counting objects 
(e.g., the abstraction principle: any discrete object can be counted, from 
stones to unicorns). Heuvel-Panhuizen (1990) found that early childhood 
educators significantly underestimated 6-year-olds’ mathematical capabil-
ity. Specifically, teachers, counselors, and teacher trainers held significantly 
lower expectations for children’s knowledge of symbols, the counting se-
quence, and adding and subtracting than what child outcomes showed 
(Heuvel-Panhuizen, 1990).

Others suggest that such beliefs may rest on mistaken assumptions that 
young children are neither interested in, nor capable of, learning mathemat-
ics. In fact, young children from birth to age 5 have informal mathematics 
knowledge (Clements and Sarama, 2007b; Ginsburg et al., 2006b) and, 
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given developmentally appropriate experiences, enjoy mathematics learn-
ing (Gelman, 1980; Irwin and Burgham, 1992). This informal knowledge 
includes the ideas of more and less, shape, space, pattern, as well as number 
and operations, and several other important areas (Gelman, 2000).

Moreover, some researchers suggest that teachers’ fundamental knowl-
edge about mathematics and mathematics instruction may be limited. For 
example, most teachers in the United States believe that mathematics is 
a static body of knowledge that mainly involves manipulating rules and 
procedures. From this point of view, the main objective in mathematics is 
to learn about discrete knowledge and arrive at the correct answer (Ball, 
1991). Little thought is given to mathematics as a problem-solving process; 
rather, the outcome (i.e., getting the correct answer) is seen as the most 
important part of learning mathematics (Thompson, 1992). This belief is 
reflected clearly in early education instruction that is rote and feedback 
processes that focus solely on right and wrong answers (Pianta et al., 2005). 
Traditionally, early childhood educators have been taught that mathematics 
is a subject that requires the use of instructional practices that are devel-
opmentally inappropriate for young children (Balfanz, 1999). In short, it 
is often the case that preschool teachers believe the content of meaningful 
mathematics is too difficult for themselves as well as for their students.

The Impact of Teachers’ Beliefs and Knowledge on Instruction

Given these beliefs and knowledge, we examine how early childhood 
teachers beliefs and understandings about mathematics impact mathematics 
instruction. Early childhood educators’ beliefs are clearly associated with 
their teaching practices (Charlesworth et al., 1991, 1993; Pianta et al., 2005; 
Stipek and Byler, 1997; Stipek et al., 2001). Pianta and colleagues (2005), 
for example, in their multistate study, found that, even after adjusting for 
teachers’ experience or degree status and program factors, such as teacher-
student ratio or full-day/part-day classes, prekindergarten teachers’ beliefs 
about children were the factor most related to global classroom quality 
as measured by the Early Childhood Environmental Rating Scale-Revised 
(ECERS-R) and the Classroom Assessment Scoring System (CLASS, which 
reported on two dimensions, instructional climate and emotional climate).

What instructional practices are teachers engaged in? Not only is em-
phasis on social and emotional development in early childhood settings a 
belief, but also it is borne out in reality. Pianta and La Paro (2003), char-
acterizing findings from standardized observations in more than a thousand 
early education settings, note that many early childhood classrooms are 
socially positive yet instructionally passive. Generally speaking and not 
surprisingly, preschool teachers spend less instructional time on mathemat-
ics than they do on literacy (Clements and Sarama, 2007b; Early et al., 
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2005; Layzer, Goodson, and Moss, 1993), a finding not much different 
from what is observed in the early elementary grades (National Institute 
of Child Health and Human Development Network Early Child Care Re-
search Network, 2002, 2005; and see Chapter 7 of this report for further 
discussion of instruction).

Early childhood educators’ pedagogical beliefs direct and constrain 
their instructional practices, which subsequently shape children’s academic 
and social environments. When addressed, early childhood mathematics is 
usually constrained to basic ideas in number and operations, such as 1-to-1 
correspondence, simple addition and subtraction, and number symbols 
or numerals (Lee and Ginsburg, 2007b). Geometry and measurement are 
noted less frequently (Clements, 2004). In addition to rote memorization 
and basic skills, such as memorizing the first 10 or so counting words, 
young children are capable of understanding more sophisticated mathemat-
ical concepts, such as cardinality. The content of young children’s math-
ematics can be both deep and broad, and, when provided with engaging 
and developmentally appropriate mathematics activities, their mathematics 
knowledge flourishes. Yet these research findings are largely not represented 
in practice.

PROFESSIONAL DEVELOPMENT OF THE WORKFORCE

The professional development of early childhood teachers is nuanced 
and complicated. We begin our discussion with an overview of professional 
development, looking at the nature of quality professional development and 
the context for the delivery of professional development, both in-service 
and pre-service. We address the impact of professional development on 
teachers’ performance generally. We then turn to a discussion of the profes-
sional development for teaching mathematics to young children, addressing 
the need for mathematics preparation; mathematics content and teacher 
preparation; efforts at in-service mathematics support, including the out-
comes of such support; and efforts at pre-service preparation for teachers 
in mathematics.

To aid the discussion, we define key terms as follows:

• Professional development: an umbrella term that refers to both for-
mal education and training.

• Formal education: refers to the amount of credit-bearing coursework 
a teacher has completed at an accredited institution, including two- 
or four-year colleges and universities.

• Training: refers to educational activities that take place outside the 
formal education process. Such efforts may include coaching, men-
toring, and workshops.
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• Pre-service education: refers to the formal education and training 
that one receives prior to having formal responsibility for a group 
of children.

• In-service education: refers to the formal education and training that 
one may receive while having formal responsibility for a group of 
children.

• Credentialing: refers to the process of demonstrating and receiving 
formal recognition from an organization for achieving a predefined 
level of expertise in education.

The Nature and Quality of Successful Professional Development Efforts

An examination of the literature from the fields of elementary edu-
cation, early childhood education, and early childhood mathematics ed-
ucation reveals some common principles that characterize high-quality 
professional development experiences. Research indicates that professional 
development efforts are most successful when they are focused on produc-
ing long-lasting change, longer in duration, focused on content knowledge 
rather than teaching strategies alone, involve active learning, and are part 
of a coherent set of professional development experiences (Birman et al., 
2000). According to Clements (2004, p. 65), six themes related to profes-
sional development emerge from reviews of the research:

1. Professional development should be standards-based, ongoing, and 
embedded in the job (i.e., practical, concrete, immediate, gradually 
connecting research and theory).

2. Teachers must have time to learn and work with colleagues, espe-
cially a consistent group.

3. Teachers should be provided with stable, high-quality sources of 
professional development that includes observation, experimenta-
tion, and mentoring, with plenty of time for reflection.

4. Professional development experiences should be grounded in a sound 
theoretical and philosophical base and structured as a coherent and 
systematic program.

5. Professional development experiences should respond to each indi-
vidual’s background, experiences, and current context or role.

6. Professional development experiences should address mathematics 
knowledge as well as mathematics education. It should be grounded 
in particular curriculum materials that focus on children’s math-
ematical thinking and learning, including learning trajectories.

These principles pertain to professional development of all types, in-
cluding pre-service education and in-service professional development, be-
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cause they reflect sound practices in adult learning, as well as data on the 
practices that ultimately lead to improved outcomes in the classroom. While 
their application may be tailored to a particular cohort or setting, these 
principles should guide development of personnel preparation programs in 
early childhood mathematics. The following section describes the overall 
context of professional development as it pertains to the early childhood 
workforce.

The Context for the Delivery of Professional Development

The professional development of early childhood and elementary school 
teachers happens both prior to teachers’ assuming classroom responsibilities 
through pre-service training and while they are teaching through in-service 
training. Unlike the professional development of most elementary school 
teachers, which occurs formally prior to their becoming teachers, many 
early childhood educators receive the majority of their professional devel-
opment while they are already working. Moreover, for most elementary 
school teachers, there is a common entry floor into the profession, typically 
consisting of the achievement of a B.A. or B.S. degree and the successful 
completion of the Praxis exams. No such common entry floor for early 
educators exists. In fact, the range of entry-level requirements for early 
educators varies from the holding of a health clearance certificate and being 
18 years of age to meeting requirements equivalent to those for elementary 
school teachers.

Although efforts are under way to elevate the quality and consistency 
of entry-level requirements and professional development opportunities 
for early educators, abundant variations of requirements and professional 
development delivery mechanisms exist. Moreover, there is considerable 
variation in what is required of, and offered to, early educators as profes-
sional development, depending on the program sponsor and funding stream 
or the state or locality in which the early educator practices her work. 
Complicating this picture, new public policies, some at the federal level but 
mostly at the state level, mean that early educator teacher and professional 
development requirements are in constant flux. In this section we elaborate 
on the unique sociopolitical context in which professional development for 
early educators exists.

On one hand, the news is quite promising. There is a broad consensus 
emerging that the professional development of the early childhood work-
force is a priority (Kagan et al., 2008). Increasingly, policy makers and the 
public are recognizing the importance of early experiences on children’s 
brain development, success in school, and general well-being (Center on 
the Developing Child at Harvard University, 2007; Martinez-Beck and 
Zaslow, 2006; National Research Council, 2000, 2001a). In addition, in-
creasing attention has been given to closing the achievement gap between 
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children from diverse economic and racial/ethnic backgrounds that has been 
documented prior to the start of school (Clements, Sarama, and Gerber, 
2005; Starkey and Klein, 2008). Mounting evidence of the central role that 
teachers play in supporting children’s development and learning through 
relationships and teaching interactions in general has added to a sense of 
urgency to improve the quality of professional development (National Re-
search Council, 2001b).

To that end, a number of federal efforts have supported professional 
development. The Head Start Program, continuing its historical commit-
ment to professional development, has expanded these efforts by calling for 
higher professional requirements for its teachers. Good Start, Grow Smart, 
a presidential initiative launched during the Bush administration, specifi-
cally charges all states with developing plans to offer education and training 
to preschool and child care personnel to receive Child Care Development 
Fund dollars. In addition, Title II of the No Child Left Behind Act provides 
competitive grants for the creation of training and educational opportuni-
ties for early educators through the Early Childhood Educator Professional 
Development Program.

At the state level, qualifications for teachers are being increased, as 
are support and incentives for teachers to seek additional professional de-
velopment (Tout, Zaslow, and Berry, 2006). The creation of professional 
development systems and quality rating systems are now abundant nation-
ally and are driving reform in pre-service and in-service education for early 
educators (Kagan et al., 2008). These changes and initiatives are occurring 
in a broader climate of increased accountability and standards in education 
(Kagan et al., 2008), further underscoring the need to provide the early 
childhood workforce with the knowledge and skills they will need to meet 
standards for early mathematics learning.

Access. Not only have mandates for degrees expanded, but access to 
higher education has also expanded in many states. Scholarship programs, 
such as the Teacher Education Assistance for College and Higher Educa-
tion Grant Program, online degree programs at both the associate and 
baccalaureate levels, better opportunities for working professionals to link 
or articulate their community-based training, Child Development Associate 
(CDA) programs, and other degree programs are all having an influence on 
the ability of early childhood educators to enter the higher education system 
and to convert their prior professional development into academic credit.

The landscape of early childhood teacher education programs in gen-
eral. An overview of the general landscape of early childhood teacher 
education provides a context for considering how ECE teachers are, and 
might be, prepared for their responsibilities in the domain of mathematics. 
According to estimates based on data collected in 2004, approximately 
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1,350 institutions of higher education offer some kind of degree program 
in early childhood education (Maxwell, Lim, and Early, 2006). Of these, 
roughly 44 percent offer a bachelor’s and/or graduate degree and 56 percent 
offer an associate’s degree, with some institutions offering both. Graduation 
rates in these programs produce at least 40,000 early childhood teachers 
per year.

Associate degree programs. There are more than 750 early childhood 
associate degree programs in the United States (Maxwell, Lim, and Early, 
2006). Most are located in community colleges, although some are under 
the umbrella of a university. In the early childhood degree program (some-
times called child development), a major influence on course offerings is 
whether the focus is on transfer to local baccalaureate programs in early 
childhood or elementary education (transfer programs) or whether students 
are primarily being prepared for work in child care, Head Start, and other 
settings immediately upon graduation (terminal programs). Although na-
tional organizations discourage classifying associate programs as transfer or 
terminal, in reality many still fall into these categories. Programs primarily 
aimed at transfer often have very few courses in early childhood curriculum 
and methods, aiming mainly at giving students a general education founda-
tion with transfer potential. Programs with greater emphasis on immediate 
career opportunities include many more child development/ECE courses 
and field experiences.

Bachelor’s degree programs. Like associate degree programs, bachelor’s 
degree programs that prepare future early childhood educators are diverse. 
Some of this diversity derives from state teacher certification categories, 
which for most programs serve to define the scope of their efforts. For 
example, some states define early childhood for licensure as birth to age 8; 
others birth to age 5; others ages 3 to 8; others preschool to Grade 2, and 
so on.

Programs’ identities and the organizational features of the different 
higher education institutions in which these programs are situated also play 
a role in creating program diversity. For example, baccalaureate-level early 
childhood departments or programs may be part of a school or college 
of education, or the program may be in a different college entirely—for 
example, a college of human development or a child and family studies 
department. These institutional arrangements, along with state require-
ments, may influence what is expected of students in all areas, including 
mathematics.

On the other hand, despite these promising developments, the overall 
early childhood educator professional development context is hampered by 
intransigent workforce challenges. First, given the salary and compensation 
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limitations of the field, those who have achieved professional degrees and 
teacher certification are often not attracted to early education. In an effort 
to remedy this situation, some new programs are compensating qualified 
early education teachers at rates comparable to elementary school teachers. 
Second, the rampant turnover rate in the field cannot be denied, and depart-
ing early educators are being replaced with individuals who are less quali-
fied, making the need for professional development even more important. 
Third, there are serious questions regarding the quality of the professional 
development content itself. There are barely a handful of certifications for 
individuals who provide early childhood mentoring, coaching, or profes-
sional development. The few states that do have such credentials have 
remarkably low bars for those who deliver in-service professional develop-
ment. Compounding these contextual challenges, there are few consistent 
delivery mechanisms, except institutions of higher education, that deliver 
high-quality early educator professional development. Finally, for those 
wishing to avail themselves of professional development experiences, either 
out of desire or mandate, there are serious issues of quality of educational 
opportunity and inequity in access to training. As this review suggests, the 
context for the professional development of early educators is complex.

The Impact of General Professional Development 
on Teacher Quality and Effectiveness

What is the role of a teacher’s education in her teaching? Several studies 
have found that the level and nature of early educators’ formal education 
is related to the overall quality of their teaching (e.g., Barnett, 2003; Tout, 
Zaslow, and Berry, 2006; Whitebook, 2003). Teachers with higher levels 
of formal education have also been linked to higher quality programs and 
more positive teacher-child interactions (Howes, 1997; Tout, Zaslou, and 
Berry, 2006). However, more recent, multistate studies have found that 
the evidence on formal education and its link to teacher effectiveness is 
questionable (Early et al., 2006, 2007), with teacher knowledge, attitudes, 
and specific teaching practices more predictive of child outcomes. While 
Early and colleagues (2007) did not find a significant relationship between 
teachers’ level of education and young children’s academic outcomes, they 
suggest that their findings should not dissuade early childhood educators 
from pursuing postsecondary education. Early and colleagues (2007) did 
not examine the course content or rigor of early childhood education pro-
grams, which may be related to teachers’ knowledge, skills, and behaviors. 
Thus, available data do not provide a comprehensive investigation of the 
host of variables that are likely to be related to teacher quality or effective-
ness (Early et al., 2007; Kagan et al., 2008).
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Questions about degrees and child outcomes. Much attention has been 
focused on several recent studies that have renewed the controversy over 
the value of degrees as guarantees of quality in early childhood teaching or 
of positive child outcomes (Early et al., 2006, 2007). Although the results 
need to be interpreted in light of the limited measures available and other 
constraints (as discussed earlier in this chapter), these studies call into ques-
tion the assumption that having a degree—especially an early childhood 
degree—must produce better developmental and learning outcomes for 
children. An important next step is to look carefully at the quality of early 
childhood degree programs (Hyson, Tomlinson, and Morris, 2008).

Another challenge in discerning the relationship between formal educa-
tion and teacher outcomes is definitional in nature. Kagan et al. (2008) note 
that, often in the literature, the term “teacher quality” refers to the positive 
actions and behaviors of teachers, particularly with regard to their interac-
tions with young children. To distinguish this definition from studies that 
focus on actual child outcomes, Kagan et al. (2008) use the term “teacher 
effectiveness” to refer to the impact of teachers’ actions and behaviors on 
the accomplishments of the children they teach (Kagan et al., 2008). Given 
these distinctions, there is some evidence of a relationship between teacher 
effectiveness and formal education for FCC providers. Clarke-Stewart and 
colleagues (2002) found children in the care of providers who had not at-
tended college scored lower on cognitive tests than children in the care of 
providers who had attended college. One explanation for these findings is 
that FCC homes usually have only one adult present to care for children, 
and this adult has a significant amount of influence on children’s learning 
and development. Center-based settings, in contrast, have many adults 
with whom children interact and thus no single teacher will have as much 
influence on them. To gain a clearer understanding of teacher quality and 
effectiveness, it will be important to examine teacher preparation and sup-
port in preparation programs (Early et al., 2007; Kagan et al., 2008).

Although some early childhood educators receive a formal education 
to prepare to work with young children, others obtain preparation through 
general training. It is important to note that training can take place prior to 
their entering the classroom, but it often occurs after teachers have begun 
teaching. General training, defined as educational activities that take place 
outside the formal education system (Kagan et al., 2008), has also been 
found to impact teacher quality and the quality of classroom environments 
(Ghazvini and Mullis, 2002; Honig and Hirallal, 1998; Tout, Zaslow, and 
Berry, 2006). For example, Honig and Hirallal (1998) found that train-
ing, independent of education and experience, had a large impact on the 
quality of services that teachers provided (e.g., positive language interac-
tions, greater support for concept learning). In addition to research linking 
training to teacher quality, one study suggests that training is linked to 
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teacher effectiveness. Burchinal and colleagues (2002) found that teachers’ 
attendance in workshops predicted global quality and children’s receptive 
language.

In addition to the research examining the relationship between gen-
eral training and teacher quality, several studies have shown that overall 
program quality improves when early childhood teachers have specialized 
training or education in child development (Blau, 2000; Phillips et al., 2001; 
Tout and Zaslow, 2004; Tout, Zaslow, and Berry, 2006). Furthermore, spe-
cialized formal education, defined by an emphasis on child development 
and early childhood education, has also been linked to improvements in 
teacher quality—specifically, that teachers who had more child development 
education were more sensitive, less harsh, and more responsive to children 
(Howes, 1997).

Separate studies have been conducted on FCC settings and the impact 
of training. Generally, training for FCC providers has shown similar trends 
to those found for center-based providers. That is, this training is related 
to higher scores on measures of global environmental classroom quality 
(Burchinal et al., 2002; Clarke-Stewart et al., 2002; Norris, 2001). Fur-
thermore, providers who received more training were more likely to offer 
a variety of activities and toys for children, balance their time indoors and 
outdoors, and actively interact with them (Norris, 2001). Training was also 
linked to teacher effectiveness in FCC settings. Specifically, children in the 
care of individuals who had participated in training in the past year scored 
higher on cognitive tests (Clarke-Stewart et al., 2002).

Overall, these findings indicate that formal education and training gen-
erally have a positive impact on teacher quality and effectiveness. However, 
the studies on which these conclusions are based are largely correlational, 
preventing the ability to draw conclusions about a causal relationship 
between training and/or formal education and teacher quality and effec-
tiveness. Furthermore, questions regarding the impact of certain types of 
training, hourly requirements for training, or specific formats or content 
are essentially not addressed (Tout, Zaslow, and Berry, 2006). Despite these 
limitations, the data indicate that, in general, teacher quality and effective-
ness are measurably better when teachers have higher levels of education 
and training, which in turns lends support for using these pre-service and 
in-service preparation systems as a means for improving practices and out-
comes related to early childhood mathematics.

Professional Development and Mathematics 
Education for Young Children

The Joint Position Statement of the NAEYC and the National Council 
of Teachers of Mathematics (NCTM) on Early Childhood Mathematics 
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(2002) names five critical areas of knowledge that early childhood teach-
ers must have to be effective in teaching mathematics to young children: 
(1) knowledge of the mathematical content that they will be teaching, (2) 
knowledge of children’s learning and development, (3) knowledge of effec-
tive mathematics pedagogy, (4) knowledge of effective means for assessing 
children’s development and learning, and (5) knowledge of the resources 
and tools available for teaching early childhood mathematics. In addition 
to acquiring these areas of knowledge, teachers also need to have a posi-
tive attitude toward mathematics (National Association for the Education 
of Young Children and National Council of Teachers of Mathematics, 
2002), believe that young children are competent mathematics learners, and 
believe that mathematics is appropriate in the early childhood classroom 
(Ginsburg et al., 2006a; Lee and Ginsburg, 2007b). Themes related to the 
need for, and the nature of, such preparation are discussed in the following 
sections.

Early childhood educators need preparation in mathematics for several 
reasons. Unlike their elementary school counterparts, most early childhood 
teachers, including those with degrees in early childhood education, have 
received no prior preparation in teaching mathematics (Copple, 2004; 
Ginsburg et al., 2006b) Therefore, virtually all early childhood teachers 
need professional development to build their knowledge and skills around 
mathematics. This is especially important in light of the recent attention 
that researchers, funding agencies, major early childhood professional orga-
nizations, and policy makers are focusing on targeting improved mathemat-
ics outcomes in early childhood, particularly for children from low-income 
backgrounds (National Association for the Education of Young Children 
and National Council of Teachers of Mathematics, 2002; National Math-
ematics Advisory Panel, 2008). As stated by Copple (2004):

Practically all teachers need to know more about mathematics—the nature 
of the beast—and how to work with children in mathematics. They need to 
know much more about what mathematics young children are interested 
in and capable of doing; many vastly underestimate the range of young 
children’s interests and the extent of their capabilities. (pp. 86-87)

Mathematics Content and Early Childhood Teacher Preparation

A good deal of the research in early childhood mathematics has focused 
on the content that is necessary to be taught in teacher preparation pro-
grams, including both in-service and pre-service programs. That is, this re-
search has focused on (1) mathematics knowledge, (2) mathematics beliefs, 
and (3) children’s mathematical development and curricula to support it.

Mathematics knowledge. Virtually no empirical research exists directly 
examining teachers’ mathematics knowledge (Ginsburg and Ertle, 2008; 
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National Mathematics Advisory Panel, 2008). However, Ginsburg and Ertle 
(2008) provide several key reasons that professional development should 
target teachers’ mathematics knowledge. First, teachers need to understand 
the mathematics that children are learning and how they may be thinking. 
According to Ginsburg and Ertle (2008), “to understand . . . students’ 
mathematical thinking and then build on it in a way that encourages con-
tinued enjoyment of the subject, the teacher must therefore understand the 
mathematics that the thinking involves” (p. 55).

Second, teachers will be more effective implementers of mathematics 
curricula, as recommended by NCTM and NAEYC, if they understand 
the mathematics well themselves. At the pre-service level in particular, this 
means that teachers may need coursework related to deeply understanding 
the important mathematical concepts of early childhood rather than simply 
general mathematics courses that might be appropriate for college students, 
such as calculus.

Third, teachers can take advantage of teachable moments in mathemat-
ics only if they carefully observe, accurately interpret, plan, and implement 
appropriate activities to further learning, all of which require deep math-
ematics knowledge. Given that, until recently, teachers may not have had 
to teach mathematics in early childhood settings, that few have received 
professional development in early childhood mathematics education, and 
that many early childhood educators have limited professional preparation 
in general, researchers and professional organizations have recommended 
that professional development address teachers’ knowledge of mathematics 
(National Association for the Education of Young Children and National 
Council of Teachers of Mathematics, 2002).

Mathematics beliefs. As noted earlier, teachers have quite strong beliefs 
about mathematics, with many feeling it lacks key significance in early 
childhood programs. Ginsburg and colleagues (2006a), in describing ef-
forts to provide training to teachers using the curriculum, Big Math for 
Little Kids, stress the importance of directly addressing the emotionally 
charged beliefs that teachers may have around mathematics. In fact, many 
early childhood teachers report they are uncomfortable with mathematics 
(Copley, 1999) and identify it as their weakest subject (Schram et al., 1988). 
In the prekindergarten settings in which the Ginsburg et al. (2006b) study 
took place, there appeared to be more resistance to mathematics than is 
typically found in kindergarten and elementary school, in which mathemat-
ics has long been expected to be taught.

Children’s mathematical development and curriculum. Naturally, pro-
fessional development in early childhood mathematics includes helping 
teachers learn about children’s developmental progression in various areas 
of mathematics, the specific learning experiences they can plan, and the 
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teaching strategies, materials, and supportive environment they can provide 
to promote mathematical development. A study with California elementary 
school teachers showed that those who received professional development 
in which teachers worked directly with curriculum materials associated 
with NCTM standards were more likely to report reform-oriented teaching 
practices in mathematics. Furthermore, results suggested that a professional 
development curriculum that overlaps with the curriculum of students 
improves instructional practices and student outcomes (Cohen and Hill, 
2000).

In early childhood mathematics, few studies exist demonstrating the 
causal effects of professional development on children‘s outcomes. Never-
theless, two programs of research in early childhood mathematics have 
demonstrated a causal link between the delivery of professional develop-
ment to implement a mathematics curriculum and positive child outcomes 
(Clements and Sarama, 2007a, 2008; Sarama et al., 2008). This research 
demonstrates the effectiveness of curriculum-based professional develop-
ment methods at the early childhood level, which complements and extends 
the existing data on effective approaches at the elementary level (Cohen and 
Hill, 2000; Sarama and DiBiase, 2004). Because experimental research is 
quite limited in this area, no studies comparing alternative approaches to 
professional development (i.e., curriculum-based versus non-curriculum-
based) have been conducted. However, there is a strong rationale for the 
use of a mathematics curriculum to provide young children with carefully 
sequenced mathematical experiences in the classroom. Thus, although addi-
tional research would broaden understanding of the best means for provid-
ing professional development in early childhood mathematics, the current 
curriculum-based research provides evidence to support the link between 
curriculum and professional development (Clements and Sarama, 2007a, 
2008; Sarama et al., 2008).

In-Ser�ice Mathematics Support Efforts

Research on early childhood mathematics has largely been focused 
on understanding children’s mathematical development and the types of 
experiences that facilitate this learning. This work has also led to the 
development of an array of early childhood mathematics curricula. How-
ever, little research has been done to date on the best methods to prepare 
educators to support children’s mathematical development or how to best 
provide training on mathematical curriculum implementation. As a result, 
questions about how to effectively scale up efforts to meet the needs of the 
early childhood workforce, as described in this chapter, have not yet been 
adequately addressed. The data that do exist can provide an example of 
effective practices and are presented below.
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Research using the Technology-enhanced, Research-based, Instruction, 
Assessment, and professional Development (TRIAD) model (Sarama et al., 
2008) provides the clearest evidence from the early childhood mathematics 
literature regarding specifically tested approaches to providing professional 
development to diverse groups of teachers from various types of programs 
serving diverse groups of children. TRIAD is a model for developing and 
scaling up a research-based curriculum. It is during the latter phases of this 
process that the focus of the research shifts from curriculum development 
and efficacy testing to the specific testing of the best methods for training 
and implementation, at first on a small scale and then to larger and more di-
verse populations (Clements, 2007). TRIAD is focused on successful change 
of classroom practices around mathematics for the long term. In that spirit, 
the professional development of teachers is just one component of the over-
all change process, and teachers are only one of the key players involved. 
Successful change requires the support not only of teachers, but also of 
administrators, parents, and children themselves (Clements, 2007).

Evaluations of the TRIAD model have proven it to be effective in im-
proving the quality of the mathematical environment and child outcomes 
(Clements and Sarama, 2008; Sarama et al., 2008). For example, in one 
study, mathematics outcomes of children participating in the experimental 
group demonstrated significant gains over children in the control group 
(effect size, 1.07, Cohen’s d) and comparison classrooms (effect size, .47, 
Cohen’s d) (Clements and Sarama, 2008). Another TRIAD-based in-service 
training experiment provided evidence that teachers in the experimental 
group reported doing more mathematics in the classroom, rating mathemat-
ics as more important than did control teachers, and feeling more prepared 
to teach mathematics.

Key components of the in-service professional development as demon-
strated by the TRIAD studies are (1) training is job-specific and tied directly 
to the use of a curriculum; (2) the training is extensive and ongoing, includ-
ing an initial training at the outset of the school year, with follow-up ses-
sions; (3) teachers are supported through onsite coaching once per month, 
aimed at helping with curriculum implementation and discussion of any 
problems or concerns that teachers have regarding its use; and (4) teachers 
have opportunities for hands-on practice, discussion, and collaboration 
with others, as well as for reflection on their practice. In-person coaching 
is the primary resource for teachers, in contrast with the combination of 
coaching and web media support offered through Building Blocks.

Two early childhood mathematics curricula, which include in-service 
professional development, that have been rigorously evaluated are SRA 
Real Math Building Blocks (Clements and Sarama, 2008) and Pre-K Math-
ematics (Starkey, Klein, and Wakeley, 2004). An intervention that combined 
elements of these two curricula has also been tested through experimental 
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research (Sarama et al., 2008). Each is a research-based curriculum that 
has been evaluated using randomized control-group designs, and both 
curricula have met the What Works Clearinghouse criteria for inclusion, 
demonstrating their effectiveness in meaningfully improving child outcomes 
in mathematics (What Works Clearinghouse, 2007).

The documentation provided to programs adopting Building Blocks 
details elements of the training and support offered to teachers using the 
TRIAD model (Clements and Sarama, 2008; Sarama et al., 2008). Building 
Blocks training and support, which has been demonstrated to be effective 
through research, consists of three elements over the course of one school 
year: (1) 34 hours of focused group training, (2) 16 hours of in-class coach-
ing and mentoring, and (3) electronic communications, including the use of 
an interactive project website (Clements and Sarama, 2008).

Understanding mathematical learning trajectories (which are called 
teaching-learning paths in this book) is a particular focus of the training, as 
a part of helping teachers learn the “conceptual storyline” (Clements and 
Sarama, 2008). In addition, trained coaches provide teachers with regular 
coaching and mentoring as well as individualized feedback and address any 
concerns or problems with implementation. The Building Blocks Learn-
ing Trajectory web application provides best practice exemplars, video-
based illustration of children’s mathematical thinking and development, 
and resources for lesson planning. Finally, teachers receive resources for 
documenting student progress. Thus, training is fairly extensive, ongoing, 
hands-on, specific, job-embedded, and tied to curriculum. Furthermore, 
training is provided by highly qualified trainers, and distance learning fa-
cilitates reaching participants in multiple locations. The documented gains 
in outcomes for teachers, classrooms, and children confirmed the efficacy of 
this approach to professional development (Clements and Sarama, 2008).

In sum, the research from these examples indicates that professional 
development in mathematics in early childhood settings is most successful 
when it is a component of an overall change process that is supported by 
all key players. They demonstrate that, although teachers can make highly 
significant improvements in children’s mathematics outcomes, learning the 
knowledge and skills needed to do so requires an ongoing effort with sup-
port to achieve this success. Frequently, the number of contact hours in 
professional development that produces success is substantially greater 
than typically offered by curriculum publishers, an issue that should be ad-
dressed. Mentoring or coaching also appears to play an important role in 
helping teachers to solve problems as they learn to apply new knowledge 
and skills, as well as helping to sustain the change process over time. Evi-
dence also shows that providing teachers with knowledge of mathematics 
and children’s mathematical thinking and development, as well as how to 
apply this knowledge through the use of a particular curriculum, is highly 
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effective at the early childhood level. These early efforts to bring profes-
sional development efforts to scale also indicate that technology may play 
an important role in overcoming logistical barriers to delivering high-
quality training to a large, diverse workforce.

Outcomes of Mathematics In-Ser�ice 
Preparation in Elementary Education

To date, there is not much research examining the relationship between 
in-service preparation and the effectiveness of mathematics teaching for 
preschool age children. However, one way to examine how formal in-
service preparation in mathematics impacts the teaching of mathematics is 
to investigate the relationship between such preparation and K-12 math-
ematics outcomes. Research on the K-12 system has found effects between 
teacher content preparation and teacher effectiveness. For example, Monk 
(1994) found a positive relationship between mathematics and science 
secondary teachers who received content-specific preparation and their 
students’ mathematics and science achievement. It should also be noted 
that the effects of content-specific preparation faded over time, suggesting 
that professional development opportunities throughout teachers’ careers 
are necessary. It seems, then, that early childhood educators must have a 
deep knowledge of mathematics as it applies to young children and must 
have their learning periodically reinforced.

Research on mathematics preparation at the early elementary level also 
provides some useful implications for early childhood education, because 
the research is particularly focused on professional development itself, 
rather than on training as a component of curriculum implementation. A 
recent review of how professional development affects student achievement 
at the K-12 level examined over 1,300 research studies and identified only 
9 that met the evidence criteria of the What Works Clearinghouse (Yoon 
et al., 2007). Five of the nine studies targeted mathematics outcomes, 
either solely or in combination with targeting outcomes in other learning 
domains. Studies that demonstrated effects on mathematics had an average 
effect size of 0.57 in mathematics outcomes, evidence of a significant impact 
on student mathematics learning outcomes. Together, they averaged slightly 
more than 53 contact hours of training over a period of four months to one 
year, which is substantially more hours than the typical elementary school 
teacher would have available for professional development (Yoon et al., 
2007) or in which they would typically participate (Birman et al., 2007, as 
cited in Yoon et al., 2007). Across all nine studies, 14 contact hours or more 
produced gains in various other domains of student achievement, such as 
literacy, indicating that mathematics-focused efforts were more sustained 
or intensive (or both) than those targeting other domains.
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Sarama and DiBiase (2004) described the effectiveness of several 
research-based professional development models for elementary school 
teachers in mathematics. The authors discuss three models in particular: 
Teaching to the Big Ideas (TBI), Cognitively Guided Instruction (CGI), and 
Project IMPACT. While these programs have a number of features, one 
key cross-cutting element is their emphasis on understanding children’s 
mathematical thinking. There are a number of differences between early 
childhood and elementary school settings, such as expectations and beliefs 
about mathematics education and the educational levels of teachers, which 
make generalizations between them problematic. However, understanding 
how professional development can effectively help teachers understand 
the developmental progressions in children’s mathematical thinking has 
important implications for professional development at the early childhood 
level. According to Sarama and DiBiase (2004), “starting with theory and 
research is not as effective as starting with practice, and then integrating 
theory and research into reflections on this practice” (p. 427). This empha-
sis on helping teachers to understand children’s mathematical thinking can 
inform professional development efforts at the early childhood level, above 
and beyond adopting and learning a curriculum.

Pre-Ser�ice Teacher Preparation in Mathematics

The examples of effective in-service professional development indicate 
the depth and breadth of preparation that all teachers need to address 
children’s mathematics learning effectively, including those who pursue 
pre-service education. Specifically, teachers need preparation that (1) con-
siders their beliefs about mathematics; (2) provides them with knowledge 
about mathematics, about children’s mathematical development, and how 
to apply it in the classroom (mathematics education); and (3) affords them 
opportunities to practice these skills in a classroom setting. However, to 
date, most college and universities offer little by way of training teachers 
to effectively teach early childhood mathematics (Ginsburg et al., 2004, 
2006a). Furthermore, many of today’s early childhood educators com-
pleted their university training or general training when mathematics was 
deemphasized for young children’s learning (Early et al., 2007). Thus, many 
early childhood educators, even the most qualified, degreed teachers, are 
not sufficiently well prepared to teach young children about mathematics.

To date, there are few if any empirical data sets that examine effec-
tive practices in pre-service preparation of early childhood teachers in 
mathematics. We consider data about the range of existing approaches 
to providing preparation in mathematics based on a preliminary review, 
which was conducted for this report, of recent college program submissions 
for accreditation with the National Council for Accreditation of Teacher 
Education (NCATE), at both the associate’s and bachelor’s degree levels. 
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In addition, we discuss the ways in which the pre-service teacher educa-
tion could be affected by changes in other related systems. Clearly, more 
research is needed to determine the effects and the quality of early child-
hood pre-service mathematics preparation. The following section addresses: 
(1) issues affecting pre-service preparation for early childhood teachers, (2) 
the landscape of early childhood teacher education programs in general, 
(3) the ways in which these programs can address the needs of teachers to 
be prepared to promote young children’s mathematical development, and 
(4) the ways in which other related credentialing systems can support the 
needed changes at the pre-service level for adequately preparing teachers in 
early childhood mathematics.

Issues affecting pre-service preparation for early childhood teachers. Be-
fore focusing on the role of mathematics in pre-service teacher prepara-
tion, we examine some more general and potentially relevant trends and 
issues that affect early childhood educators’ pre-service preparation. These 
trends include degree requirements, the academic content in teacher edu-
cation courses, and assessment of the effectiveness of teacher preparation 
programs.

Degree requirements. Policy makers at the federal and state levels con-
tinue to increase their requirements for early childhood educators to possess 
degrees—and, increasingly, the baccalaureate degree. Thus, one might ex-
pect an ever-higher percentage of early childhood educators to pass through 
the higher education system, creating more opportunities to enhance their 
mathematical competence through that system.

Academic content. State and federal governments have placed greater em-
phasis on academic content in teacher education. This is reflected in some 
states’ requirements for all education students to have an academic major 
and in states’ limiting the number of credits that can be taken in more ap-
plied areas, such as pedagogy. This trend potentially expands opportunities 
to enhance mathematics content for future early childhood educators, but 
it may also limit students’ opportunities to apply their content knowledge 
through field experiences and related pedagogical coursework. A related 
trend, prompted by concerns about the achievement gap in children’s lit-
eracy skills, has been an increase in state and institutional requirements 
in the areas of literacy and reading. The potential for competition among 
literacy, mathematics, and other content areas creates dilemmas for the 
design of early childhood teacher preparation programs.

Assessing competence. There is a growing tendency—spurred to a great 
extent by NCATE—to focus less on counting time for seatwork assignments 
and more on assessment of future teachers’ competence (including their ef-
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fects on children’s learning), when judging whether a teacher preparation 
program is effective. This emphasis is posing new challenges for programs 
as they consider how to conduct standards-based, valid assessments in key 
areas.

Preparing Teachers to Promote Young Children’s 
Mathematics De�elopment

No systematic national evaluation has been conducted to date of the 
nature and amount of preparation specifically in mathematics that these de-
gree programs offer. However, a preliminary review of the NCATE submis-
sions of both bachelor’s and associate’s degree programs conducted for this 
study indicates that programs currently address mathematics in a number 
of ways that involve required coursework and field experiences (Hyson, 
Tomlinson, and Morris, 2008).

Coursework. The coursework that degree programs offer to prepare teach-
ers to teach mathematics at the early childhood level may consist of general 
mathematics courses, courses on how to teach mathematics, or mathematics 
education. Pre-service teacher preparation programs have addressed this in 
a number of ways. Generally, if an early childhood mathematics course is 
offered, it often focuses on “math methods” (Ginsburg et al., 2006a). Some 
programs have general education mathematics requirements, either solely 
or in combination with course requirements in mathematics education. 
Associate’s and bachelor’s degree programs may require one or more general 
mathematics course, such as college algebra, while others offer students the 
choice of selecting a course in mathematics or in science as part of their 
degree requirements.

For mathematics education coursework, both associate’s and bachelor’s 
degree programs use a range of approaches, such as requiring one or more 
courses in teaching early childhood mathematics, embedding mathematics 
education in a general early childhood curriculum course, or combining 
mathematics and science education. Some offer mathematics education 
courses focused only on elementary mathematics. This broad range of ap-
proaches indicates that there is considerable variability in the depth and 
breadth of teachers’ knowledge, exposure, and experiences in mathematics 
teaching, even among teachers with degrees, who represent the most quali-
fied in their field.

Overall, the evidence shows that some programs offer in-depth, high-
quality early mathematics education, and some programs provide almost no 
preparation. Pre-service programs should review their coursework in early 
childhood mathematics to ensure that they are preparing teachers to teach 
and support their students as effectively as possible. This involves preparing 
teachers in the following areas:
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• Mathematics. A deep understanding of the mathematical concepts 
discussed in Chapter 2 and children’s mathematical development as 
discussed in Chapters 5 and 6 is necessary for teachers to know what 
and how to teach mathematics effectively to young children.

• Curriculum. Teachers need to learn about the curriculum available 
to them for teaching mathematics to young children. They also need 
to study the different pedagogical arguments underlying different 
curriculum in order to be able to make informed choices when they 
have their own classrooms (see Chapter 7).

• Assessment. Programs need to prepare teachers to effectively assess 
young children’s mathematical skills and thinking. Furthermore, 
teachers should be trained to use assessments to inform and improve 
on their instructional practices (see Chapter 7).

• Beliefs. Pre-service programs should provide teachers with an op-
portunity to discuss and explore their attitudes and beliefs about 
mathematics and the effects of those beliefs on their teaching.

Faculty. Some programs, particularly those at the associate’s level that 
rely heavily on adjunct faculty, may face challenges with having person-
nel qualified to teach early childhood mathematics courses. Because many 
teacher educators may have been prepared at a time when mathematics 
was deemphasized for young children, these personnel themselves may 
require some support to be adequately knowledgeable and prepared to 
teach the content. Alternatively, programs may take advantage of distance 
learning and web-based courses offered by mathematics educators at other 
universities and programs to fill gaps in the mathematics preparation of 
their students.

Field experiences. Some programs require specific field experiences in 
mathematics associated with mathematics education coursework, others in-
clude it as one component of many in a general student teaching experience 
or simply do not require any practical mathematics teaching experience at 
all. Research is clear that effective approaches to professional development 
in early childhood mathematics require opportunities to practice and use 
new knowledge and skills and to receive meaningful feedback.

Role of credentialing systems in preparing teachers in early childhood 
mathematics. To ensure that future degreed teachers have the knowledge 
and skills that they need to promote early childhood mathematics in the 
classroom, providers of pre-service preparation programs are likely to need 
to make changes to their offerings and requirements in early childhood 
mathematics. While some programs may initiate these changes on their 
own, in reality four key systems have a great deal of influence over the con-
tent and experiences of pre-service education programs in early childhood 
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education. They should be updated to reflect current knowledge in early 
childhood mathematics, along the lines presented in this report. These sys-
tems include: state certification and licensure requirements, Praxis exams, 
NAEYC standards and other credentialing systems outside of states.

Currently, 48 states have arrangements such that they will give at 
least initial licensure to a teacher who has graduated from an NCATE-
accredited institution, in a program that has been recognized by the appro-
priate national specialty professional association, such as NAEYC (Margie 
Crutchfield, NCATE, personal communication, April 2, 2008) rather than 
specifying particular coursework or credits. However, programs with both 
NCATE and NAEYC accreditation account for less than one third of all 
early childhood bachelor’s programs (Maxwell, Lim, and Early, 2006).

The Praxis exams, which are used in NCATE’s national accreditation/
recognition of early childhood programs, include multiple-choice tests of 
students’ basic skills (Praxis I) and tests of their competence in a specific 
teaching area (Praxis II). These exams serve as gatekeepers at various stages 
of students’ progress through the pre-service program and entry into the 
profession.

The NAEYC standards are reportedly are used by faculty to guide 
design and improvement of associate’s and bachelor’s degree programs 
(Hyson, Tomlinson, and Lutton, 2007). Also, programs participating in 
NAEYC’s national recognition and accreditation systems are likely to focus 
on the NAEYC standards. However, while mathematics is explicitly part 
of the standards (in Standard 4: Teaching and Learning), the current sys-
tem for national recognition and accreditation does not require pre-service 
programs to specifically document their graduates competence in math, 
nor are the actual learning opportunities offered in mathematics explicitly 
evaluated.

Finally, the Child Development Associate (CDA) and the National 
Board for Professional Teaching Standards (NBPTS) certification are two 
credentialing systems that operate outside of state teacher licensure sys-
tems. They are important because much of the early childhood workforce 
obtains or extends their professional development through them. The CDA 
is obtained through a combination of fieldwork, coursework, and other 
reading, writing, and conferencing requirements and is the most frequently 
required qualification for child care center directors (National Child Care 
Information Center, 2005). A review of the key materials used in CDA 
training and assessment conducted for this report revealed a need for addi-
tional mathematics-related resources to increase the ability of advisers and 
instructors to support CDA candidates’ understanding of and engagement 
in early childhood mathematics.

The NBPTS uses a rigorous review process to certify “accomplished 
teachers” in 26 fields, including the early childhood generalist category, 
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which covers teachers with bachelor’s degrees who educate and care for 
children ages 3 to 9. Candidates provide the national board with four 
portfolio entries that document teaching competence and accomplishments 
outside the classroom, and demonstrate their content knowledge in a set 
of “assessment center exercises” specific to their certificate area. NBPTS 
requires that early childhood candidates include a videotaped mathematics-
related instructional sequence in their portfolios (with detailed justifica-
tion and self-analysis) and that one of two challenging assessment center 
exercises be in the domain of mathematics. Recent research has linked 
national board certification with improved child outcomes (National Re-
search Council, 2008).

Summary of issues related to pre-service teacher preparation in math-
ematics. Early childhood educators who pursue pre-service education 
prior to their entry into the workforce participate in a range of types of 
associate’s and bachelor’s degree programs. These programs, in turn, ad-
dress mathematics education preparation in a variety of ways, ranging from 
requiring general mathematics courses or specific mathematics coursework 
and fieldwork (or both), to combining mathematics with other disciplines, 
to hardly addressing it at all. While no data on the effects of pre-service 
mathematics programs on later teaching and outcomes exist, data from ef-
fective in-service preparation indicate the content and types of experiences 
in early childhood mathematics that lead to positive outcomes—specifi-
cally, to be prepared to teach mathematics to young children, teachers need 
knowledge of mathematics, mathematical development, effective pedagogy, 
including the use of curriculum, and assessment, as well as opportunities 
to use this knowledge in early childhood classrooms. In addition, beliefs 
that may hinder the acquisition and application of this knowledge should 
be addressed. The influence of systems, including licensure requirements, 
Praxis exams, NAEYC standards, and credentialing systems, is important 
to consider. These systems are potential levers for increasing the focus on 
mathematics in early childhood professional development.

SUMMARY

The nature of the early childhood workforce is important to understand 
as perhaps one of the most critical contextual factors to improving the 
mathematical development of young children. As one of the primary ve-
hicles through which children learn mathematics, teachers exert enormous 
influence. Yet in preparing teachers to take on this challenge, it is critical 
to face the realities of the workforce—namely that teachers present with a 
wide range of educational backgrounds, compensation, and work settings 
but tend to share beliefs and values that are generally less supportive of 
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mathematics in the early childhood classroom than social-emotional devel-
opment. Compounding the challenge, these teachers, despite their diverse 
qualifications, have typically received little, if any, preparation to teach 
early childhood mathematics.

Research on the effective delivery of mathematics-specific professional 
development is fairly new and there continues to be a need for more work 
in this area. Research indicates that professional development efforts at 
all levels are most effective when they address teachers’ own mathematics 
knowledge, beliefs about mathematics, knowledge of children’s mathemati-
cal thinking and development as well as mathematics pedagogy, knowledge 
of appropriate mathematical assessment practices, and knowledge of re-
sources for supporting mathematics in their classrooms. Of these, a focus 
on understanding children’s developmental progression in mathematics tied 
to specific activities through a curriculum is the most salient feature of ef-
fective professional development in mathematics.

Effective approaches to in-service professional development in mathe-
matics are ongoing, grounded in theory, tied to a curriculum, job-embedded, 
at least partially onsite, delivered by a knowledgeable and prepared trainer, 
supported by administrators, and accompanied by supports for teachers 
during implementation through mentors, coaches, and technology, mean-
ingful feedback, time for hands-on practice and reflection, and opportuni-
ties to work and solve problems collaboratively with other teachers and 
trainers. Professional development in mathematics may require extensive 
contact hours and a sustained effort. Furthermore, professional develop-
ment is but one component of successful teacher/program change. This 
requires collaboration from administrators, teachers, parents, and children, 
as well as those from the outside helping to bring about change.

While few data are available regarding effective approaches to pre-
service education in early childhood mathematics, the range of approaches 
to providing this preparation that currently exists demonstrates that many 
program graduates leave with minimal preparation to teach early childhood 
mathematics. To prepare early childhood educators at the pre-service level, 
programs need to require coursework and fieldwork in mathematics, focus-
ing on the content areas described in this report that all teachers need in 
this domain. To support these changes in programs, teacher educators will 
require support. Furthermore, licensure and credentialing systems, assess-
ments of teacher competence, and professional and state standards should 
reflect greater emphasis on mathematics.

Although more data are available at the in-service level than at the 
pre-service level, even the available studies represent relatively small-scale 
efforts, presenting considerable logistical challenges to meeting the needs of 
the field. While data indicate that the use of technology, such as interactive 
websites and distance learning, is effective in reaching large numbers of 
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teachers in early childhood programs, both at the in-service and pre-service 
levels, more research and creative solutions will be needed for scale-up 
efforts.

This chapter describes the importance of the early childhood work-
force in promoting children’s mathematical development. The next chapter 
presents the committee’s conclusions and recommendations to improve the 
teaching and learning of early childhood mathematics.
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Conclusions and Recommendations

Over the past several decades there has been an increased focus on the 
importance of the preschool period—between ages 3 and 5—in providing 
children with the opportunities they need to get off to a successful start in 
formal schooling. Many policy makers are now intent on implementing 
universal public preschool because of the mounting evidence that high-qual-
ity preschool can help ameliorate inequities in educational opportunity and 
begin to address achievement gaps. The importance of supporting literacy 
in these early childhood settings is widely accepted, but little attention is 
given to mathematics. However, research on children’s capacity to learn 
mathematics, when combined with evidence that early success in mathemat-
ics is linked to later success in both mathematics and reading, makes it clear 
that basic literacy consists of both reading and mathematics. Improvements 
in early childhood mathematics education can provide young children with 
the foundational educational resources that are critical for school success. 
Furthermore, the increasing importance of science and technology in ev-
eryday life and for success in many careers highlights the need for a strong 
foundation in mathematics.

Historically, mathematics has been viewed by many as unimportant 
to or developmentally inappropriate for young children’s learning experi-
ences. However, the research synthesized in this report makes it clear that 
these beliefs are unfounded. In the course of normal development, young 
children develop key mathematical ideas and skills that include counting; 
adding and subtracting; finding which is more (or less); working with 
shapes by moving, combining, and comparing them to learn some of their 
properties; experiencing and labeling spatial terms (e.g., above, below); 
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and understanding length measurement as the number of length units that 
makes the total; as well as representing and communicating mathematics 
understanding to others.

Relying on a comprehensive review of the research, this report lays 
out the critical areas that should be the focus of young children’s early 
mathematics education, explores the extent to which they are currently in-
corporated into early childhood settings, and identifies the changes needed 
to improve the quality of mathematics experiences for young children. The 
committee describes these critical areas of mathematics in terms of teaching-
learning paths that can be used to promote optimal learning. Such a path 
describes the skills and knowledge that are foundational to later learning 
and lays out a likely sequence of the steps toward greater competence. One 
can look closely along the path to gauge what children will be able to do 
next and to design instructional activities that will help them move along 
the path. The notion of such teaching-learning paths is a framing assump-
tion for the conclusions and recommendations of this report.

To ensure that all children enter elementary school with the mathemati-
cal foundation they need for success, the committee recommends a major 
national initiative in early childhood mathematics. The success of such an 
initiative requires that parents, early childhood teachers, policy makers, 
and communities reconceptualize the way they think about and understand 
young children’s mathematics. The early childhood education system (e.g., 
workforce, early childhood programs, and policies) will need to work co-
herently together toward this goal. Furthermore, families and communities 
must also adopt this goal if they are serious about improving children’s 
mathematics education.

In this chapter, the committee summarizes the major conclusions of 
the report organized around the chapters, articulates the key recommenda-
tions that flow from these conclusions, and lays out an agenda for future 
research.

CHILDREN’S COMPETENCE AND POTENTIAL 
TO LEARN MATHEMATICS

The committee’s review of developmental research with infants and 
toddlers demonstrates that the knowledge and competencies relevant to 
mathematics are present from early in life. As early as infancy, babies are 
curious about their world and are able to think about it in mathematical 
ways. Preverbal number knowledge is shared by humans from diverse cul-
tural backgrounds as well as by other species. For example, by 10 months 
of age, young infants can distinguish a set of two items from a set of three 
items, and over time they are able to distinguish the number of items in sets 
with larger numbers. Building on this foundation, young children continue 
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to expand their knowledge and competence and enjoy their early informal 
experiences with mathematics, such as spontaneously counting toys, excit-
edly asking who has more, or pointing out shapes.

Conclusion 1: Young children have the capacity and interest to learn 
meaningful mathematics. Learning such mathematics enriches their 
current intellectual and social experiences and lays the foundation for 
later learning.

Knowledge and competencies acquired through everyday experiences 
provide a starting point for mathematics learning. Infants’ and toddlers’ 
natural curiosity initially sparks their interest in understanding the world 
from a mathematical perspective, and the adults and communities that 
educate and care for them also provide experiences that serve as the basis 
for further mathematics learning. Children’s everyday environments are 
rich with mathematics learning opportunities, for example, using relational 
words, such as more than/less than, and counting and sorting objects by 
shape or size. These foundational, everyday mathematics experiences can 
be built on to move children further along in their understanding of math-
ematical concepts.

Conclusion 2: Children learn mathematics, in part, through everyday 
experiences in the home and the larger environment beginning in the 
first year of life.

Children need rich mathematical interactions and guidance, both at 
home and school to be well prepared for the challenges they will meet 
in formal schooling. Parents, other caregivers, and teachers can play a 
fundamental role in the organization of learning experiences that support 
mathematics because they can expose children to mathematically rich envi-
ronments and engage them in mathematics activities. For example, parents 
and caregivers can teach children to see and name small quantities, count, 
and point out shapes in the world, “Here are two crackers. You have one 
in each hand. These crackers are square.”

One important way that young children’s mathematics learning can be 
enhanced is through adult support and instruction that is connected to and 
extends their preexisting mathematics knowledge. For example, a situa-
tion in which a young child insists on having “more” teddy bears than his 
playmate provides an opportunity for the adult to engage the child with a 
mathematical question (e.g., who has more and how can you find out?). In 
this instance, the adult can use several key mathematical ideas to help the 
child understand who has more bears, such as using the number word list to 
count, 1-to-1 counting correspondence, cardinality (i.e., knowing the total 
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number of items in the set), and comparing the number of bears in the two 
sets. These kinds of mathematics learning opportunities help children learn 
to mathematize or engage in processes that involve focusing on the math-
ematical aspects of an everyday situation, learn to represent and elaborate 
a model of the situation, and use that model to solve problems.

Conclusion 3: Children need adult support and instruction to build and 
extend their early knowledge and learn to focus on and elaborate the 
mathematical aspects of everyday situations—to mathematize.

The committee was keenly aware of the influence that developmental 
and contextual variations have on children’s learning opportunities and the 
quality of their educational environments both inside and outside the class-
room. Understanding individual differences in children’s development—for 
example, in executive function or in opportunities to learn about math-
ematics in their everyday environments—is fundamental to supporting the 
development of competence in mathematics. Although all children need 
extensive exposure to mathematics, there is a wide range of individual 
variation across all domains of learning. This affects the kinds of learning 
experiences and instruction that individual children need. The need to sup-
port early childhood mathematics education in ways that are appropriate 
for diverse learners and contexts is a theme throughout the committee’s 
discussion of early childhood mathematics.

Conclusion 4: Due to individual variation, which is related to a com-
bination of previous experiences, opportunities to learn, and innate 
ability, some children need more extensive support in mathematics 
than others.

It is important to understand the sources of observed differences in 
children’s competence and not confuse one source of individual variation 
for another. For example, low performance might be attributed to a deficit 
in a child’s ability to learn mathematics, when it actually results from other 
factors, such as that child’s lack of opportunities to learn mathematics or 
difficulties stemming from linguistic and cultural barriers between teacher 
and child.

Opportunities to explore the mathematics of everyday life differ de-
pending on children’s background, including their socioeconomic status 
(SES) and cultural group. Mathematics knowledge and skills vary within 
and between cultural groups due to a variety of factors, including language 
and relative emphasis placed on mathematics. Cultural, linguistic, and 
socioeconomic factors interact in complex ways that are difficult to tease 
apart.
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The committee was particularly concerned about mathematics teaching 
and learning for children from low socioeconomic backgrounds because of 
the particular challenges they face that can have an impact on their knowl-
edge and competence in mathematics. For example, they may be more likely 
to attend schools with fewer resources and have less support for mathemat-
ics at home. Thus, although children with very low and high mathematics 
knowledge and competence are found across all SES groups, those with low 
SES will need particular attention. Importantly, providing young children 
with high-quality mathematics instruction can help to ameliorate systematic 
inequities in educational outcomes and later career opportunities.

Conclusion 5: Young children in lower socioeconomic groups enter 
school, on average, with less mathematics knowledge and skill than 
their higher socioeconomic status peers. Formal schooling has not been 
successful in closing this gap for low socioeconomic status children.

In addition to needing instructional support in mathematics, evidence 
indicates that young children also need to be supported in their social-
emotional development as an integral part of their education. Specifically, 
during the early education years, children develop general competencies and 
approaches to learning that include their capacity to regulate their emotions 
and behavior, to focus their attention, and to communicate effectively with 
others. In turn, mathematics learning can help to promote the development 
of these general competencies.

Conclusion 6: All learning, including learning mathematics, is facili-
tated when young children also are developing skills to regulate their 
own learning, which includes regulating emotions and behavior, focus-
ing their attention, and communicating effectively with others.

FOUNDATIONAL AND ACHIEVABLE 
MATHEMATICS FOR YOUNG CHILDREN

On the basis of research evidence about children’s knowledge and 
competence during the early childhood years, as well as on the established 
consensus of the early childhood mathematics community (see, for example, 
the NCTM Curriculum Focal Points), the committee identified two areas 
of mathematics on which to focus: (1) number, including whole number, 
operations, and relations, and (2) geometry, spatial thinking, and mea-
surement. In each of these areas, the committee offers guidance about the 
teaching-learning paths based on what is known from developmental and 
classroom-based research. Each child’s progression along these mathematics 
teaching-learning paths is a function of his or her own level of develop-
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ment as well as opportunities and experiences, including instruction. The 
teaching-learning paths can provide the basis for curriculum and can be 
used by teachers to assess where each child is along the path.

Although it is true that young children are more competent in math-
ematics than many early childhood teachers, parents, and the general 
public believe, there are limits to what they can do in mathematics. The 
committee kept this in mind throughout the study process, and thus the 
teaching-learning paths presented in this report are both foundational and 
achievable.

The first content area is number, including whole number, operations, 
and relations. Working with number (e.g., learning to count) is the primary 
goal of many early childhood programs; however, when given the oppor-
tunity, children are capable of demonstrating competence in more sophis-
ticated mathematics activities related to whole number, operations, and 
relations. For example, cardinality—knowing how many are in a set—is 
a key part of children’s number learning. Relations and operations are 
extensions of understanding number. The relations core consists of such 
skills as constructing the relations more than, less than, and equal to. The 
operations core includes addition and subtraction.

The second major content area is geometry, spatial thinking, and mea-
surement. Children’s foundational mathematics involves geometry or learn-
ing about space and shapes in two and three dimensions (e.g., learning to 
recognize shapes in many different orientations, sizes, and shapes). A fun-
damental understanding of shape begins with experiences in which children 
are shown varied examples and nonexamples and understand attributes of 
shapes that are mathematically relevant as well as those (e.g., orientation, 
size) that are not. As children progress along the teaching-learning path, 
they need opportunities to discuss and describe shapes, and, on the basis 
of these experiences, they gain abilities to combine shapes into pictures and 
eventually learn to take apart and put together shapes to create new shapes. 
Young children also need instructional activities involving spatial orienta-
tion and spatial visualization. For example, they can use mental representa-
tions of their environment and, on the basis of the representation, model 
relationships between objects in their environment. Importantly, children’s 
knowledge of measurement helps them connect number and geometry be-
cause measurement involves covering space and quantifying this coverage. 
Later, children can compare lengths by measuring objects with manipulable 
units, such as centimeter cubes.

Number is particularly important to later success in school mathemat-
ics, as number and related concepts make up the majority of mathemat-
ics content covered in later grades. However, it is important to point out 
that concepts related to number (and relations and operations) can also 
be explored through geometry and measurement. In addition, geometry 
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and measurement provide rich contexts in which children can deepen their 
mathematical reasoning abilities.

Conclusion 7: Two broad mathematical content areas are particularly 
important as a focus for mathematics instruction in the early years: (1) 
number (which includes whole number, operations, and relations) and 
(2) geometry, spatial thinking, and measurement.

In the context of these core content areas, young children should 
engage in both general and specific thinking processes that underpin all 
levels of mathematics. These include the general processes of representing, 
problem solving, reasoning, connecting, and communicating, as well as the 
more specific processes of unitizing, decomposing and composing, relating 
and ordering, looking for patterns and structures, and organizing and clas-
sifying information. In other words, children should learn to mathematize 
their world: focusing on the mathematical aspects of an everyday situation, 
learning to represent and elaborate the quantitative and spatial aspects of 
a situation to create a mathematical model of the situation, and using that 
model to solve problems.

Conclusion 8: In the context of each of these content areas, young chil-
dren should engage in both general and specific mathematical thinking 
processes as described above and in Chapter 2.

THE EARLY CHILDHOOD EDUCATION SYSTEM

The early childhood education “delivery system,” which educates and 
cares for children before kindergarten entry, has a great deal of diversity 
and is best characterized as a loosely sewn-together patchwork of different 
kinds of programs and providers that vary widely in the extent to which 
they articulate and act on their educational missions or are explicitly de-
signed to provide education services. Program types range from friends and 
relatives who care for children in the home through informal arrangements, 
to large centers staffed by teachers offering a structured curriculum.

This diversity in the early childhood education system characterizes the 
education and care arrangements of young children in the United States 
today. About 40 percent of young children spend their day in a home-based 
setting, either with a parent or some other caregiving adult (this percentage 
includes children in home-based relative and nonrelative care as well as 
children who do not have any regular early education and care arrange-
ments), and about 60 percent are in some kind of center-based care (this 
includes children in center-based non-Head Start and Head Start settings).

Depending on the type of setting, different regulations regarding edu-
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cational standards or expectations may be in place, which in turn influence 
the nature and quality of young children’s learning experiences from setting 
to setting. Increasingly, policy makers are focused on how to provide high-
quality preschool education for more children, especially to those whose 
families cannot afford to pay for it. A number of states are moving toward 
state-funded preschool education to provide early education and care for 
these children.

Across all settings, there is a need to increase the amount and qual-
ity of time devoted to mathematics. Formal settings with an educational 
agenda represent the greatest opportunity for implementing a coherent, 
sequenced set of learning experiences in mathematics. For this reason, the 
committee focused attention on the kind of curriculum and instruction that 
can be implemented in centers and preschools. The committee gave more 
limited attention to how to increase support for mathematics in informal 
settings. These approaches are discussed in the section “Beyond the Educa-
tion System.”

Curriculum and Instruction

Having laid out a vision for optimal teaching-learning paths in early 
childhood mathematics, the committee turned to the evidence base re-
lated to curriculum and instruction. The committee first examined the 
extent to which the content and learning experiences embodied in the 
teaching-learning paths are represented in current curricula and preschool 
classrooms. Next, the committee explored what is known about effective 
mathematics instruction for young children and what might need to be done 
to improve existing practice. The committee looked for evidence to address 
two sets of questions: What is known about how much mathematics in-
struction is available currently to children in preschool settings and of what 
quality? What is known about the best methods of instruction and effective 
curriculum to teach mathematics to young children? Although few system-
atic data exist, the committee was able to identify some useful sources. We 
conducted original analyses of the standards documents pertaining to early 
childhood for 49 states and those pertaining to kindergarten for the 10 
states with the largest student populations. On the basis of these analyses, 
the committee concludes:

Conclusion 9: Current state standards for early childhood do not, on 
average, include much mathematics. When mathematics is included, 
there is a pattern of wide variation among states in the content that is 
covered.

Although standards represent broad guidance from the states regard-
ing appropriate content for early childhood settings, they do not provide a 
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window on what actually occurs in classrooms. For the latter, the commit-
tee examined data from a large-scale study of instruction in state-funded 
preschools drawn from 11 states as well as several, small-scale studies of 
curriculum. The results show that when mathematics activities are incor-
porated into early childhood classrooms, they are often presented as part 
of an integrated or embedded curriculum, in which the teaching of math-
ematics is secondary to other learning goals. This kind of integration occurs 
when, for example, a storybook has some mathematical content but is not 
designed to bring mathematics to the forefront, a teacher counts or does 
simple arithmetic during snack time, or points out the mathematical ideas 
children might encounter during play with blocks. However, data suggest 
that heavy reliance on integrated or embedded mathematics activities may 
contribute to too little time being spent on mathematics in early childhood 
classrooms. Furthermore, the time that is spent may be on activities in 
which the integrity and depth of the mathematics is questionable. Few of 
the existing comprehensive early childhood curriculum approaches provide 
enough focused mathematics instruction for children to progress along the 
teaching-learning paths recommended by the committee.

Conclusion 10: Most early childhood programs spend little focused 
time on mathematics, and most of it is of low instructional quality. 
Many opportunities are therefore missed for learning mathematics over 
the course of the preschool day.

Evidence examined by the committee suggests that instructional time 
focused on mathematics is potentially more effective than embedded math-
ematics. Emerging evidence from a few studies of rigorous mathematics 
curricula show that children who experience focused mathematics activi-
ties in which mathematics teaching is the major goal have higher gains in 
mathematics and report enjoying mathematics more than those who do not. 
Furthermore, these studies indicate that a planned, sequenced curriculum 
can support young children’s mathematical development in a sensitive and 
responsive manner. Supplemental opportunities to use mathematics during 
mathematical play, sociodramatic play, and with concrete materials (e.g., 
blocks, puzzles, manipulatives, interactive computer software) can provide 
children with the opportunity to “practice” mathematics in a meaningful 
and engaging context.

Conclusion 11: Children’s mathematics learning can be improved if 
they experience a planned, sequenced curriculum that uses the research-
based teaching-learning paths described in this report, as well as inte-
grated mathematics experiences (e.g., mathematics in the context of a 
storybook) that extend mathematical thinking through play, explora-
tion, creative activities, and practice.



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

��0 MATHEMATICS LEARNING IN EARLY CHILDHOOD

Effective mathematics curricula use a variety of instructional ap-
proaches, such as a combination of individual, small-group, and whole-
group activities focused on mathematics that move children along the 
research-based teaching-learning paths described in this report. Further-
more, in all these contexts, intentional teaching enhances the mathematics 
learning of young children. Intentional teaching varies from teacher-guided 
activities to responsive feedback that builds on and extends the child’s under-
standing. It is also important to engage children in math talk—discussion 
between adults and children that focuses on mathematics concepts, such 
as how many objects are in a set or how to arrive at an answer—as this 
facilitates their mathematical development by increasing the connections 
they make between mathematics concepts, words, and ideas. It should be 
noted that the committee does not endorse any specific model or curricu-
lum; rather we hope to convey that the research-based principles described 
in this report should guide choices about development of early childhood 
mathematics curriculum and instruction.

Conclusion 12: Effective early mathematics curricula use a variety of 
instructional approaches and incorporate intentional teaching.

Evidence also indicates that instruction is more effective when it can 
build on information about the child’s current level of understanding. Such 
responsive instruction can be accomplished when teachers know how to 
use formative assessment to guide instruction. Formative assessment is an 
important component of what teachers need to know to effectively guide 
children along the mathematics teaching-learning paths.

Conclusion 13: Formative assessment provides teachers with informa-
tion about children’s current knowledge and skills to guide instruction 
and is an important element of effective mathematics teaching.

Evidence from studies of early childhood education indicates that any 
approach to curriculum and pedagogy is more effective if undertaken in the 
context of a positive learning environment. Positive relationships between 
children and their teachers are a key aspect of high-quality early childhood 
education. In this kind of classroom, children are provided with a safe and 
nurturing environment that promotes learning and positive interactions 
between teachers and peers.

Conclusion 14: Successful mathematics learning requires a positive 
learning environment that fully engages children and promotes their 
enthusiasm for learning.
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Workforce and Professional Development

The early childhood workforce—those who serve both instructional 
and noninstructional roles in early childhood settings—is central to sup-
porting the academic, social, emotional, and physical development of young 
children. This workforce consists of people who serve in a variety of roles, 
are located in a variety of settings, and have a wide range of education and 
training backgrounds. About 24 percent of early childhood workers are 
in center-based settings, 28 percent are in regulated home-based settings, 
and about 48 percent work in informal care arrangements outside both 
of these systems. Although the majority of early childhood professionals 
work in informal care settings, the majority of children are in center-based 
settings. Even in a single setting, individuals fill different roles, such as lead 
teacher, assistant teacher, classroom aide, or program administrator. Level 
and type of training can vary by both role and setting. For example, family 
child-care providers may have little or no specific training in early child-
hood education, a teachers’ assistant may have some formal coursework, 
and center-based lead teachers may have a 4-year college degree (or even a 
graduate degree) with specialization in early childhood.

This diversity of roles and educational backgrounds creates challenges 
for addressing the workforce needs related to supporting early childhood 
mathematics. Individuals in different roles are likely to need different kinds 
of knowledge and training to support children’s mathematics. Depending 
on level of education, there are also likely to be differences in individuals’ 
knowledge of mathematics, of children’s development in mathematics, and 
of how to support mathematics learning.

In addition, the field of early childhood has historically placed great 
emphasis on teaching its workforce to support children’s social and emo-
tional development, placing less attention on cognitive development and 
academic domains. Indeed, academic activities, such as mathematics learn-
ing, can be a context in which social-emotional development flourishes. In 
large part, the heavy emphasis on social-emotional development in early 
childhood is based on misinterpretations of cognitive development theories; 
that is, the notion of young children engaging in more abstract thinking, 
such as mathematics, was believed to be at odds with the development and 
learning of preschool-age children. Research on early childhood mathemat-
ics has disproved this notion, but the idea is still pervasive in the field and 
continues to be a challenge in moving from research to practice.

Conclusion 15: Many in the early childhood workforce are not aware 
of what young children are capable of in mathematics and may not 
recognize their potential to learn mathematics.
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Professional development, which typically provides training to those 
already in the workforce, can be a vital mechanism for providing teachers 
with new or updated skills and knowledge that they need and for reach-
ing those in the workforce who have little or no formal training. Based on 
studies at the K-12 level, effective approaches to in-service professional 
development in mathematics are ongoing, grounded in theory, tied to a cur-
riculum, job-embedded, and delivered at least partially onsite by a knowl-
edgeable trainer who allows teachers time for reflection. The committee 
reviewed emerging data from studies conducted in early childhood settings 
that support these findings. These studies indicate that professional devel-
opment focused on understanding children’s developmental progression 
in mathematics in the context of a research-based curricular sequence can 
improve teachers’ instructional effectiveness. An effort to provide profes-
sional development to teachers is one important component of successfully 
improving instruction, but sustainable change will also require collabora-
tion from administrators, teachers, and parents.

Conclusion 16: In-service education of teachers and other staff to 
support mathematics teaching and learning is essential to effective 
implementation of early childhood mathematics education. Useful pro-
fessional development will require a sustained effort that involves help-
ing teachers to (a) understand the necessary mathematics, the crucial 
teaching-learning paths, and principles of intentional teaching and 
curriculum and (b) learn how to implement a curriculum.

Evidence reviewed by the committee about the formal preparation of 
early childhood educators (courses taken as part of an associate or under-
graduate degree) indicates that there are few opportunities to learn about 
children’s development in mathematics or how to teach early childhood 
mathematics. To better prepare early childhood educators in mathematics, 
additional courses and additional materials in existing courses that cover 
children’s development in mathematics and mathematics pedagogy are 
needed. Furthermore, licensure and credentialing systems exert a great deal 
of influence over the content and experience of pre-service education pro-
grams in early childhood, and few incorporate mathematics requirements.

Conclusion 17: Pre-service preparation of early childhood educators 
typically includes few opportunities to learn about children’s math-
ematical development or how to support it. Licensure and certifica-
tion requirements for credentialing teachers and programs are both 
potential leverage points for increasing the amount of attention given 
to supporting mathematics.
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In addition to the challenges already outlined regarding the diverse 
training and settings of the workforce, attracting and retaining qualified in-
dividuals to work in early childhood is difficult due to poor compensation, 
lack of benefits, and high turnover rates in the field. This situation presents 
an additional challenge to designing pre-service and in-service experiences 
that can improve early childhood educators’ knowledge of how to support 
young children’s learning in mathematics.

Conclusion 18: Improving the training and knowledge requirements for 
early childhood teachers will present significant challenges unless exist-
ing issues of recruitment, compensation, benefits, and high turnover are 
also addressed.

BEYOND THE EDUCATION SYSTEM

A significant number (about 40 percent) of children do not attend cen-
ters but instead are educated and cared for by a parent, relative, or another 
adult in homes. Parents or other caregivers serve as children’s first teachers; 
evidence reviewed by the committee indicates that they can play a key role 
in shaping children’s early mathematics learning through such activities as 
encouraging play with blocks and other manipulatives, teaching number 
words, playing counting and board games, sorting, classifying, writing, 
and viewing educational television programs while talking with children 
about what they are watching. Math talk has been shown to be a particu-
larly effective way for adults to support the development of mathematical 
ideas. In fact, math talk beginning as early as infancy is related to children’s 
mathematics knowledge at preschool entry. In addition, informal learning 
environments, such as libraries, museums, and community centers, have 
the potential to be resources that parents and caregivers can use to engage 
children in mathematics activities.

Conclusion 19: Families can enhance the development of mathematical 
knowledge and skills as they set expectations and provide stimulating 
environments.

Evidence indicates, however, that low-SES families are less likely than 
families from higher socioeconomic groups to engage in the kind of prac-
tices that promote language and mathematics competence. Although many 
types of educational programs have been designed to promote the use of 
these practices with low-SES parents, there is little evidence about the 
qualities that make such efforts successful. Educational programs for par-
ents based on models that place parents in the traditional role of students 
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learning from “experts” have difficulty sustaining family participation long 
enough to be successful.

Conclusion 20: Educational programs for parents have the potential to 
enhance the mathematical experiences provided by parents; however, 
there is little evidence about how to design such programs to make 
them effective.

The resources available to parents and other caregivers as well as those 
available through informal educational environments (e.g., libraries, muse-
ums, community centers) can also be an effective mechanism for supporting 
children’s mathematics learning. Educational television programming and 
software, for example, can teach children about mathematics. The com-
mittee reviewed research on software and educational programs, as well 
as models of community-based programs that promote mathematics, and 
concludes:

Conclusion 21: Given appropriate mathematical content and adult 
support, the media (e.g., television, computer software) as well as 
community-based learning opportunities (e.g., museums, libraries, 
community centers) can engage and educate young children in math-
ematics. Such resources can provide additional mathematics learning 
opportunities for young children, especially those who may not have 
access to high-quality early education programs.

RECOMMENDATIONS

As the committee’s conclusions make clear, there is much work to be 
done to provide young children with the learning opportunities in math-
ematics that they need. Thus, the committee thinks it is critically important 
to begin an intensive national effort to enhance opportunities to learn 
mathematics in early childhood settings to ensure that all children enter 
school with the mathematical foundations they need for academic success. 
The research-based principles and mathematics teaching-learning paths de-
scribed in this report can also reduce the disparity in educational outcomes 
between children from low-SES backgrounds and their higher SES peers.

The research to date about how young children learn key concepts in 
mathematics has clear implications for practice, yet these findings are not 
widely known or implemented by early childhood educators or even those 
who teach early childhood educators. This report has focused on synthesiz-
ing and translating this evidence base into a usable form that can be used 
to guide a national effort. Thus the committee recommends:



Copyright © National Academy of Sciences. All rights reserved.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

CONCLUSIONS AND RECOMMENDATIONS ��5

Recommendation 1: A coordinated national early childhood mathemat-
ics initiative should be put in place to improve mathematics teaching 
and learning for all children ages 3 to 6.

A number of specific recommendations for action follow from this 
overarching recommendation. The specific steps and the individuals or or-
ganizations that must be involved in enacting them are outlined below.

Recommendation 2: Mathematics experiences in early childhood set-
tings should concentrate on (1) number (which includes whole num-
ber, operations, and relations) and (2) geometry, spatial relations, and 
measurement, with more mathematics learning time devoted to num-
ber than to the other topics. The mathematical process goals should 
be integrated in these content areas. Children should understand the 
concepts and learn the skills exemplified in the teaching-learning paths 
described in this report.

In both content areas, sufficient time should be devoted to instruction 
to allow children to become proficient with the concepts and skills outlined 
in the teaching-learning paths. In addition, the general and specific math-
ematical process goals (see Chapter 2) must be integrated with the content 
in order to allow children to make connections between mathematical ideas 
and deepen their mathematical reasoning abilities. This new content focus 
will require that everyone involved rethink how they view and understand 
the mathematics that is learned in early childhood. Early childhood learn-
ing goals, programs, curricula, and professional development will need to 
be informed by and adapted to the research-based teaching-learning paths 
laid out in this report. The committee therefore recommends:

Recommendation 3: All early childhood programs should provide 
high-quality mathematics curricula and instruction as described in this 
report.

Early childhood programs will each need to implement a thoughtfully 
planned curriculum that includes a sequence of teacher-guided mathemat-
ics activities as well as child-focused, teacher-supported experiences. Such 
curricula must be based on models of instruction that are appropriate for 
young children and support their emotional and social development as well 
as their cognitive development. As noted previously, effective mathematics 
curricula use a variety of instructional approaches and should incorporate 
opportunities for children to extend their mathematical thinking through 
play, exploration, creative activities, and practice.

Programs will need to review, revise, and align their existing stan-
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dards, professional development, curriculum, and materials to achieve the 
teaching-learning paths for early childhood mathematics education pre-
sented in this report. It is especially important that children living in pov-
erty receive such high-quality experiences so that they start first grade on 
a par with children from more advantaged backgrounds. This means that 
implementation of our recommendations by programs serving economically 
disadvantaged children, such as Head Start and publicly funded early child-
hood programs, is particularly urgent.

To make the recommended changes, early childhood programs will 
need explicit policy directives to do so. To encourage this, the committee 
recommends:

Recommendation 4: States should develop or revise their early child-
hood learning standards or guidelines to reflect the teaching-learning 
paths described in this report.

Given the fresh knowledge and perspectives this report affords, it is 
important that states review their early learning and development stan-
dards and guidelines to ensure that they reflect an appropriate emphasis 
on early mathematics. To that end, we call for all states to examine their 
early learning and development guidelines, first, to determine that sufficient 
emphasis is given to the importance of mathematics for young children’s 
development and, second, to ensure that the mathematics content focuses 
on (1) number (including whole number, operations, and relations) and (2) 
geometry, spatial thinking, and measurement.

Recommendation 5: Curriculum developers and publishers should base 
their materials on the principles and teaching-learning paths described 
in this report.

Teachers and early childhood programs need appropriate materials in 
order to support children’s mathematical development and learning. Cur-
riculum developers and publishers who produce materials for curriculum, 
instruction, and assessment should revise and update them so that they 
reflect the principles articulated in this report.

The success of this overall effort will need to focus on reaching both 
the existing early childhood workforce and pre-service educators to provide 
them with skills and knowledge they need to teach mathematics. Thus, we 
make several recommendations related to teachers and the workforce.

Recommendation 6: An essential component of a coordinated national 
early childhood mathematics initiative is the provision of professional 
development to early childhood in-service teachers that helps them 
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(a) to understand the necessary mathematics, the crucial teaching-
 learning paths, and principles of intentional teaching and curriculum 
and (b) to learn how to implement a curriculum.

Applying teachers’ theoretical knowledge to a curriculum with a strong 
mathematics component provides them with the opportunity to get feed-
back and reflect on the instructional practices that they will actually be im-
plementing in the classroom. Professional development should also focus on 
teachers’ beliefs about children’s mathematics, the activities and resources 
in the classroom that can promote children’s mathematical development, 
and their knowledge of curriculum-linked assessment practices. All of these 
important areas should be included in professional development delivered 
by a highly qualified teacher educator.

To implement high-quality mathematics instruction, the committee 
also recommends that early childhood educators be taught to use a range 
of effective instructional strategies in a variety of formats, including whole-
group, pair/small-group, and individual work; exploration and practice; 
and play and focused activities.

Serious efforts to improve the preparation of early childhood teachers 
will need to include the state licensure/certification, accreditation and recogni-
tion, and credentialing systems that assess teachers’ competence and program 
quality. The early childhood mathematics described in this report should be 
reflected in the core components of these systems and programs.

Recommendation 7: Coursework and practicum requirements for early 
childhood educators should be changed to reflect an increased emphasis 
on children’s mathematics as described in the report. These changes 
should also be made and enforced by early childhood organizations 
that oversee credentialing, accreditation, and recognition of teacher 
professional development programs.

The committee also recognizes the need to go beyond the formal early 
childhood education system to reach families and communities—both of 
which have a strong impact on young children’s learning. An important 
component of reaching all children will need to include strategies aimed at 
children who are in other settings, such as homes or family child care.

Recommendation 8: Early childhood education partnerships should 
be formed between family and community programs so that they are 
equipped to work together in promoting children’s mathematics.

For example, family education and support programs, such as the Head 
Start Family and Community Partnerships Program, should include infor-
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mation that provides guidance to families and communities as to why they 
should and how they can help children develop key mathematical ideas and 
skills. Furthermore, professionals working with families should be given 
training focused on early mathematics knowledge and skills, as well as have 
access to programs and resources on home-based mathematics activities. To 
this end, there is a need for development of more resources that can support 
mathematics in informal settings and through media and technology.

Recommendation 9: There is a need for increased informal program-
ming, curricular resources, software, and other media that can be used 
to support young children’s mathematics learning in such settings as 
homes, community centers, libraries, and museums.

FUTURE RESEARCH

In its work, the committee conducted a comprehensive review of the 
existing evidence related to mathematics development and learning in early 
childhood. As noted, we have determined that the evidence base is robust 
enough to guide a major national initiative in early mathematics. Yet gaps 
remain in the knowledge base about children’s mathematics education. We 
think it is critical that the research base continue to advance in a number 
of key areas outlined below.

Implications for English language learners. Increasingly, early childhood 
classrooms serve significant numbers of children whose first language is 
not English; these children will be held to the same expectations for future 
achievement as children whose home language is English. To date, little 
published research has investigated the teaching and learning of mathemat-
ics with preschool age children who are simultaneously learning English. 
The committee recommends research be conducted that can help identify 
the best methods of enhancing the mathematical learning of young children 
who speak a first language other than English.

Research on the role of teachers in pro�iding effecti�e instruction. In re-
cent years, researchers have made progress in understanding the process of 
teaching mathematics at the elementary school level. This research stresses 
the role of teachers’ knowledge and skill including their knowledge of 
mathematics, their understanding of children’s mathematical thinking and 
learning and their pedagogical content knowledge (i.e., their knowledge of 
how to structure the classroom and curriculum and to engage children in 
activities so that the mathematics is accessible). However, there has been 
much less attention to similar issues in early childhood settings. Research 
is needed to determine the extent to which the findings from research in 
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the higher grades apply to mathematics instruction in early childhood and 
what might be unique to early childhood.

E�aluation of curricula. In the course of our review of early childhood 
mathematics, it became clear that many of the available curricula have not 
been rigorously evaluated for effectiveness. High-quality curriculum re-
search is needed that tracks the effectiveness of curricula during implemen-
tation, using the theories and instructional models that were originally used 
to guide development of the curriculum. This research must also consider 
how diversity in children’s backgrounds and across learning environments 
influences implementation and effectiveness. To achieve these goals, the 
committee recommends that curriculum research and development move 
through phases: from early reviews of relevant research to the creation of 
learning materials to help children along the teaching-learning paths in this 
report, to cycles of baseline evaluation, and finally to confirmatory evalu-
ation using rigorous designs, with all phases integrating quantitative and 
qualitative methodologies. Research of this type will help ensure that early 
childhood programs can make informed, evidence-based choices among 
curricula.

Effecti�e teacher preparation. Much of the recent research on the prepa-
ration of early childhood educators has focused on whether the bachelor’s 
degree is an effective marker for teachers’ competency. While this line of 
inquiry has been helpful in identifying some of teachers’ skills that are 
related to positive child learning outcomes, research in the field needs to 
move beyond the B.A./non-B.A. distinction. The committee recommends 
that research on the effectiveness of early childhood teachers focus on the 
content and quality of teacher education programs rather than on whether 
or not teachers have a bachelor’s degree.

Parental in�ol�ement. It is unclear why families from low SES back-
grounds often do not participate in educational activities and what can 
be done to promote their involvement in these programs. The committee 
therefore recommends the conduct of better descriptive studies that exam-
ine what parents understand about supporting their children’s mathematics 
learning and how to promote parents involvement in these efforts. Further-
more, if parents do have knowledge about how to support their children’s 
mathematical development but are not putting this knowledge into practice, 
it is important that research examine the impediments that stand in the way 
of their actively promoting early childhood mathematics.

Inter�entions for children with mathematics learning disabilities. Explo-
ration of learning difficulties or disabilities in mathematics is a nascent area 
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of research that needs expansion. Further exploration is needed to better 
understand what early number competencies are predictive of future success 
in mathematics. Such research can help identify children at risk for learning 
difficulties or disabilities in mathematics during the preschool years, de-
velop targeted interventions for such children, and test their effectiveness.
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Appendix A

Glossary

Accumulator mechanism refers to the nonverbal counting mechanism of 
infants that generates mental magnitudes for sets by adding a fixed 
magnitude for each unit that is enumerated. This system is inherently 
inexact, and its inexactness increases with increasing number. It pro-
vides an approximate numerical representation that does not preserve 
any representation of the items. Hence, it does not provide a way to 
distinguish successive numbers, such as 10 and 11.

Additive comparison situations are those in which two quantities are com-
pared to find out how much more or how much less one is than the 
other.

Analog magnitude system refers to approximate representations of large 
numbers beginning with toddler and preschool-age children.

Attribute blocks refer to collections of blocks in which attributes (e.g., 
color, shape, size, thickness) are systematically varied so that children 
can sort them in multiple ways.

Cardinality refers to the number of items in the set.
Change plus/change minus situations refer to addition and subtraction 

situations in which there are three quantitative steps over time, a start 
quantity, a change, and a result. Change plus situations can be formu-
lated with an equation of the form start quantity + change quantity 
= result quantity. Change minus situations can be formulated with 
an equation of the form start quantity − change quantity = result 
quantity.
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Child-guided experiences refer to experiences in which children acquire 
knowledge and skills through their own exploration and through inter-
actions with objects and with peers.

Composing/decomposing refers to putting together and taking apart and 
applies to numbers as well as to geometry and measurement. For ex-
ample, 10 ones are composed to form one group of 10 and 6 can be 
decomposed into 5 + 1. Two identical right triangles can be composed 
to form a rectangle, and a hexagon can be decomposed into six trian-
gles. Measurement itself requires viewing the attribute to be measured 
as composed of units.

Computational fluency refers to accurate, efficient, and flexible computa-
tion with basic operations.

Credentialing refers to the process of demonstrating and receiving formal 
recognition from an organization for achieving a pre-defined level of 
expertise in education.

Direct instruction refers to situations in which teachers give information or 
present content directly to children.

Early childhood education (ECE) teachers refer to all personnel whose pri-
mary role is to provide direct instructional services for young children. 
Included in this category are lead teachers, assistant teachers, aides, and 
family child care providers.

ECE teaching workforce refers to those who carry out both instructional 
and noninstructional roles in ECE settings. The term is an inclusive 
one that embraces teachers, others who work in the ECE settings and 
whose primary responsibility is not instructional (e.g., administrators), 
and individuals who work in settings that support ECE (e.g., resource 
and referral coordinators).

Encouragement and affirmation refers to feedback that relates to teachers’ 
abilities to motivate children to sustain their efforts and engagement.

Explicit instruction refers to all of a teachers’ instructional actions and 
interactions that are not unplanned or incidental.

Feedback loops refer to sustained exchanges between a teacher and child 
(or group of children) that leads the child to a better or deeper under-
standing of a particular idea.

Finding a pattern refers to looking for structures and organizing and clas-
sifying information. It is a mathematical process used throughout 
mathematics.

Focused curriculum (primary mathematics) refers to a curriculum that is 
designed and has the primary goal to teach mathematics with meaning-
ful connections to children’s interest and prior knowledge.
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Formal education refers to the amount of credit-bearing coursework a 
teacher has completed at an accredited institution, including two- or 
four-year colleges and universities.

Formative assessment refers to the process of gaining insight into children’s 
learning and thinking in the classroom and of using that information 
to guide instruction. It entails the use of several methods—observation, 
task, and flexible interview—that help the teacher develop ideas about 
children’s thinking and learning and about teaching methods that can 
help them learn. Formative assessment is often inseparable from teach-
ing and usually not distinctly identified as assessment, but formative 
assessment can also be used in a deliberate and organized format.

Geometry refers to the study of shapes and space, including flat, two-
 dimensional space as well as three-dimensional space.

In-service education refers to the formal education and training that one may 
receive while having formal responsibility for a group of children.

Instruction/pedagogy refers to intentional teaching.
Instructional feedback refers to a response where the teacher provides stu-

dents with specific information about the content or process of learning 
and provides the opportunity to practice and master knowledge and 
skill.

Instructional supports refer to concept development, quality of feedback, 
and language modeling.

Integration refers to the blending together of two or more content areas in 
one activity or learning experience with the purpose of making content 
meaningful and accessible but also allowing more content to be covered 
during the instructional period.

Intentional teaching refers to holding a clear learning target as a goal and 
adapting teaching to the content and type of learning experience for 
the individual child, along with the use of formative assessment to de-
termine the child’s development in relation to the goal.

Language modeling refers to a practice by adults when they converse with 
children, ask open-ended questions, repeat or extend children’s re-
sponses, and use a variety of words, including more advanced language 
and building on words the children already know.

Manipulatives refer to concrete objects—including blocks, geometric shapes, 
and items for counting—to support children’s mathematical thinking.

Mathematics teaching-learning path refers to the significant steps in learn-
ing a particular mathematical topic with each new step building on the 
earlier steps. Teaching-learning paths are often referred to as learning 
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trajectories, a term that emphasizes the sequential and direct route 
from one skill level to the next. The sources of a teaching-learning path 
are: (1) the subject matter being taught—what skills and knowledge 
provide the foundation for later learning, and (2) what is achievable/
understandable for children at a certain age given their prior knowl-
edge. Teaching-learning paths also provide a basis for targeting the 
curriculum, assessing children’s progress along the path, and adapting 
their instruction to help children make continued progress.

Mathematizing refers to reinventing, redescribing, reorganizing, quantify-
ing, structuring, abstracting, and generalizing concepts and situations 
first understood on an intuitive and informal level in the context of ev-
eryday activity into mathematical terms. This process allows children to 
create models of situations using mathematical objects or actions and 
their relationships to solve problems, including the use of increasingly 
abstract representations.

Measurement refers to the process of determining the size of an object with 
respect to a chosen attribute (such as length, area, or volume) and a 
chosen unit of measure (such as an inch, a square foot, or a gallon).

Morphological marker refers to the word element that signifies quantity, 
such as whether the word is singular or plural. For example, the s on 
the end of dogs, which indicates that the word is plural, is the morpho-
logical marker. The term quantifier morphology is used interchangeably 
with morphological marker.

Number competencies refer equally to both the knowledge and skills con-
cerning number and operations that can be taught and learned.

Number sense refers to the interconnected knowledge of numbers and op-
erations. It is a combination of early preverbal number sense and the 
increasingly important influence of experience and instruction.

Numeral refers to the symbol used to represent a number.
Numerosity refers to the quantity of a set.

Object file system refers to the representation of each object in a set com-
prised of very small numbers, but no representation of set size. For this 
form of representation, the objects in a small set are in 1-to-1 corre-
spondence with each mental symbol. Thus, a set of three items is rep-
resented as “this” “this” “this” rather than “a set of three things.”

One-to-one (1-to-1) correspondence refers to correspondence between two 
collections if every member of each collection is paired with exactly one 
member of the other collection and no members of either collection is 
unpaired or is paired with more than one member.
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Place value refers to the meaning of a digit in a written number as deter-
mined by its placement within the number.

Pre-service education refers to the formal education and training that one 
receives prior to having formal responsibility for a group of children.

Primary mathematics/focused mathematics time refers to a dedicated in-
structional time focused on mathematics as the primary goal.

Professional development is an umbrella term including both formal educa-
tion and training.

Prompting thought processes refers to a particular feedback strategy for 
mathematics instruction that asks students to explain their thinking 
or actions.

Providing information refers to clarifying incorrect answers or providing 
very specific information about the correct answer.

Put together situations refer to addition/subtraction situations in which two 
quantities are put together to make a third quantity.

Relating and ordering refers to mathematical processes of comparing and 
placing in order.

Relating parts and wholes level refers to a level of thinking that occurs 
when children combine pattern block shapes to make composites that 
they recognize as new shapes and to fill puzzles, with growing inten-
tionality and anticipation.

Scaffolding refers to an instructional strategy in which the teacher provides 
information and assistance that allow children to perform at a higher 
level than they might be able to do on their own. It extends knowledge 
rather than verifying prior or existing knowledge.

Secondary (embedded) mathematics refers to a form of integration through 
which teaching and exposure to mathematics content is an ancillary 
activity. One or more subjects other than mathematics, such as literacy 
or science, are the primary goals of the activity.

Spatial orientation refers to knowing where one is and how to get around 
in the world. Children have cognitive systems that are based on their 
own position and their movements through space, as well as external 
references. They can learn to represent spatial relations and movement 
through space using both of these systems, eventually mathematizing 
their knowledge.

Spatial visualization/imagery refers to the process that occurs when there 
is understanding and performing imagined movements of two-dimen-
sional and three-dimensional objects. To do this requires creating a 
mental image and manipulating it, showing the close relationship be-
tween these two cognitive abilities.
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Subitizing is the process of recognizing and naming the number of objects 
in a set.
Conceptual subitizing refers to using pattern recognition to quickly 

determine the number of objects in a set, such as seeing 2 things 
and 2 things and knowing this makes 4 things in all.

Perceptual subitizing refers to instantly recognizing and naming the 
number of objects in a set.

Superposition is the act of placing one item on top of another.

Take apart situations refer to addition/subtraction situations in which a 
total quantity is taken apart to make two quantities (which do not 
have to be equal). These situations generally have several solutions. For 
example: Joey has 5 marbles to put in his 2 pockets. How many can he 
put in his left pocket and how many in his right pocket?

Tangram is a puzzle consisting of seven flat shapes, called tans, which are 
put together in different ways to form distinct geometric shapes.

Teacher effectiveness refers to the impact of teachers’ actions and behaviors 
on the accomplishments and/or learning outcomes of the children they 
teach.

Teacher-guided instruction refers to teachers’ planning and implement-
ing experiences in which they provide explicit information, model or 
demonstrate skills, and use other teaching strategies in which they take 
the lead.

Teacher-initiated learning experiences refer to classroom experiences that 
are determined by the teacher’s goals and direction, but ideally also 
reflect children’s active engagement.

Teacher quality refers to the positive actions and behaviors of teachers, 
particularly with regard to their interactions with young children.

Thinking about parts level refers to a level of thinking that occurs when 
preschoolers can place shapes contiguously to form pictures in which 
several shapes play a single role (e.g., a leg might be created from three 
contiguous squares) but use trial and error and do not anticipate cre-
ation of new geometric shapes.

Training refers to the educational activities that take place outside of the 
formal education process. Such efforts may include coaching, mentor-
ing, or workshops.

Unitizing refers to finding or creating a mathematical unit as it occurs in 
numerical, geometric, and spatial contexts.

Virtual manipulatives refer to manipulatives accessed through learning soft-
ware and composed of digital “objects” that resemble physical objects 
and can be manipulated, usually with a mouse, in the same ways as 
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their authentic counterparts. Virtual versions of concrete manipulatives 
typically used in mathematics education include base 10 blocks, Cui-
senaire rods, and tangrams. Many available virtual manipulatives are 
paired with structured activities or suggestions to aid implementation 
in the classroom.

Visual/holistic level refers to a level of thinking that occurs when children 
have formed schemes, or mental “patterns,” for these shape catego-
ries. It refers to the ability of preschoolers to learn to recognize a wide 
variety of shapes, including shapes that are different sizes and are 
presented at different orientations. They also learn to name common 
three-dimensional shapes informally and with mathematical names 
(“ball”/sphere, “box” or rectangular prism, “rectangular block” or 
“triangular block,” “can”/cylinder). They name and describe these 
shapes, first using their own descriptions and increasingly adopting 
mathematical language.
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Appendix B

Concepts of Measurement

At least eight concepts form the foundation of children’s understanding 
of length measurement. These concepts include understanding of the attri-
bute, conservation, transitivity, equal partitioning, iteration of a standard 
unit, accumulation of distance, origin, and relation to number.

Understanding of the attribute of length includes understanding that 
lengths span fixed distances (“Euclidean” rather than “topological” concep-
tions in the Piagetian formulation).

Conser�ation of length includes understanding that lengths span fixed 
distances and the understanding that as an object is moved, its length does 
not change. For example, if children are shown two equal length rods 
aligned, they usually agree that they are the same length. If one is moved 
to project beyond the other, children 4½ to 6 years often state that the 
projecting rod is longer (at either end; some maintain, “both are longer”; 
the literature is replete with different interpretations of these data, but 
certainly children’s notion of “length” is not mathematically accurate). At 
5 to 7 years, many children hesitate or vacillate; beyond that, they quickly 
answer correctly. Conservation of length develops as the child learns to 
measure (Inhelder, Sinclair, and Bovet, 1974).

Transiti�ity is the understanding that if the length of object X is equal 
to (or greater/less than) the length of object Y and object Y is the same 
length as (or greater/less than) object Z, then object X is the same length 
as (or greater/less than) object Z. A child with this understanding can use 
an object as a referent by which to compare the heights or lengths of other 
objects.

Equal partitioning is the mental activity of slicing up an object into the 
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same-sized units. This idea is not obvious to children. It involves mentally 
seeing the object as something that can be partitioned (or cut up) before 
even physically measuring. Asking children what the hash marks on a ruler 
mean can reveal how they understand partitioning of length (Clements and 
Barrett, 1996; Lehrer, 2003). Some children, for instance, may understand 
“five” as a hash mark, not as a space that is cut into five equal-sized units. 
As children come to understand that units can also be partitioned, they 
come to grips with the idea that length is continuous (e.g., any unit can 
itself be further partitioned).

Units and unit iteration. Unit iteration requires the ability to think 
of the length of a small unit, such as a block as part of the length of the 
object being measured, and to place the smaller block repeatedly along the 
length of the larger object (Kamii and Clark, 1997; Steffe, 1991), tiling the 
length without gaps or overlaps, and counting these iterations. Such tiling, 
or space filling, is implied by partitioning, but that is not well established 
for young children, who also must see the need for equal partitioning and 
thus the use of identical units.

Accumulation of distance and additi�ity. Accumulation of distance is the 
understanding that as one iterates a unit along the length of an object and 
count the iteration, the number words signify the space covered by all units 
counted up to that point (Petitto, 1990). Piaget, Inhelder, and Szeminska 
(1960) characterized children’s measuring activity as an accumulation of 
distance when the result of iterating forms nesting relationships to each 
other. That is, the space covered by three units is nested in or contained in 
the space covered by four units. Additivity is the related notion that length 
can be decomposed and composed, so that the total distance between two 
points is equivalent to the sum of the distances of any arbitrary set of seg-
ments that subdivide the line segment connecting those points. This is, of 
course, closely related to the same concepts in composition in arithmetic, 
with the added complexities of the continuous nature of measurement.

Origin is the notion that any point on a ratio scale can be used as the 
origin. Young children often begin a measurement with “1” instead of zero. 
Because measures of Euclidean space are invariant under translation (the 
distance between 45 and 50 is the same as that between 100 and 105), any 
point can serve as the origin.

Relation between number and measurement. Children must reorganize 
their understanding of the items they are counting to measure continuous 
units. They make measurement judgments based on counting ideas, often 
based on experiences counting discrete objects. For example, Inhelder, 
Sinclair, and Bovet (1974) showed children two rows of matches, in which 
the rows were the same length but each row was comprised of a different 
number of matches as shown in Figure B-1. Although, from the adult per-
spective, the lengths of the rows are the same, many children argued that 
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the row with 6 matches was longer because it had more matches. Thus, 
in measurement, there are situations that differ from the discrete cardinal 
situations. For example, when measuring with a ruler, the order-irrelevance 
principle does not apply and every element (e.g., each unit on a ruler) 
should not necessarily be counted (Fuson and Hall, 1982).

Concepts of Area Measurement

Understanding of area measurement involves learning and coordinat-
ing many ideas (Clements and Stephan, 2004). Most of these ideas, such as 
transitivity, the relation between number and measurement, and unit itera-
tion, operate in area measurement in a manner similar to length measure-
ment. Two additional foundational concepts will be briefly described.

Understanding of the attribute of area involves giving a quantitative 
meaning to the amount of bounded two-dimensional surfaces.

Equal partitioning is the mental act of cutting two-dimensional space 
into parts, with equal partitioning requiring parts of equal area (usually 
congruent).

Spatial structuring. Children need to structure an array to understand 
area as truly two-dimensional. Spatial structuring is the mental operation 
of constructing an organization or form for an object or set of objects in 
space, a form of abstraction, the process of selecting, coordinating, unify-
ing, and registering in memory a set of mental objects and actions. Based 
on Piaget and Inhelder’s (1967) original formulation of coordinating dimen-
sions, spatial structuring takes previously abstracted items as content and 
integrates them to form new structures. It creates stable patterns of mental 
actions that an individual uses to link sensory experiences, rather than the 
sensory input of the experiences themselves. Such spatial structuring pre-
cedes meaningful mathematical use of the structures, such as determining 
area or volume (Battista and Clements, 1996; Battista et al., 1998; Outhred 
and Mitchelmore, 1992). That is, children can be taught to multiply linear 
dimensions, but conceptual development demands this build on multiplica-
tive thinking, which can develop first based on, for example, their thinking 
about a number of square units in a row times the number of rows (Nunes, 
Light, and Mason, 1993; note that children were less successful using rulers 
than square tiles).

FIGURE B-1 Relationship between number and measurement.

Figure B-1
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 word problems and situations, 32-35, 

101, 149, 151-152, 155, 157, 159
Additive comparison situations, 23, 33, 34, 

231, 351
Ages 2-3
 addition/subtraction teaching-learning 

path, 130, 154, 155
 cardinality, 130, 131, 132-134, 139-140, 

150, 154
 compositions and decompositions, 177, 

185, 186, 187-188, 206

Index

��1
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 coordinating components, 131, 138-140
 counting correspondences, 131, 134-

137, 138-139
 measurement, 202, 205-206
 number core teaching-learning path, 

130, 131-140
 number word list, 131, 134, 138
 operations teaching-learning path, 150, 

155
 relations teaching-learning path, 130, 

150, 154-155
 shapes and objects, 177, 185, 186
 spatial relations, 177, 185, 186, 205-206
 vocabulary, 154
 written number symbols, 131, 138
Age 4 (prekindergarten). See also Preschool 

children
 cardinality, 141, 142, 150, 155, 156
 compositions/ decompositions, 178, 186-

187, 189-190, 206
 counting correspondences, 136, 141, 

144
 counting out n things, 141, 145, 156, 

157
 matching, 155, 156
 measurement, 202, 206
 number core teaching-learning path, 

130, 141-145
 number word list, 141, 142-143, 144, 

145
 operations teaching-learning path, 130, 

150-151, 154, 155, 157-159
 relations teaching-learning path, 130, 

150, 155-157
 shapes, 177-178, 186-187, 188
 spatial relations, 177-178, 186-187, 

188-189
 vocabulary, 155, 156-157, 188-189
 written number symbols, 138, 141, 

144-145
Age 5. See Kindergarten
Algebraic problem solving, 165
Analog magnitude system, 63, 70, 112, 168, 

351
Area, 35, 36, 37, 39, 46, 49, 53, 61-62, 65, 

66, 79, 177, 179, 190, 201-204, 205, 
207, 209-210, 354, 361

Arithmetic properties, 50-52
Assessment practices. See also Formative 

assessment
 multiple-choice tests, 100

Attention, 84
Attitudes and beliefs about mathematics
 ECE teachers, 8-9, 297-300, 309
 parents, 8, 102, 344
 preschool children, 12
Attribute blocks, 47, 183-184, 209-210, 

248, 351
Automaticity, 128

B

Behavioral and attention regulation, 82-84, 
335

Big Math for Little Kids, 256, 263, 271, 
309

Bright Beginnings, 269
Building Blocks curriculum, 248, 256, 270, 

271, 311, 312
Bureau of Labor Statistics, 291-292

C

Calendar activities, 241-242, 275
California, 230, 233, 290, 293, 310
Cardinality
 and addition/subtraction operations, 

130, 150, 154
 ages 2-3, 130, 131, 132-134, 154
 cognitive foundations, 63, 71
 coordinations and, 23, 25-26, 130, 131, 

139
 counting and, 129, 130, 131, 135, 139, 

140, 147
 defined, 22, 23, 139, 333-334, 336, 351
 and equivalence classes, 63, 71
 foundational content, 22, 23, 25-26, 31, 

32, 34, 36, 53, 336
 games, 53
 grade 1, 147, 148
 infant concepts, 63
 instruction practices, 245-246, 300, 

333-334
 kindergarten, 146
 and measurement, 36, 53
 number word list and, 25-26, 31, 32, 

129, 132, 147, 148
 one-to-one correspondence and, 22, 24, 

129
 parents’ perceptions of children’s 

abilities, 104
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 prekindergarten, 142
 principle, 135
 socioeconomic variation on tasks of, 103
 standards of learning, 230, 231
 subitizing and, 132, 134, 141, 142, 146, 

150, 151, 155
 teaching-learning paths, 129, 130, 131, 

132-134, 135, 139, 140, 141, 142, 
147, 148, 150, 169

 truly operational cardinal number, 166
Charge to committee, 1, 10-13
Child Care Development Fund, 303
Child Development Associate, 292, 303, 

318
Child-initiated experiences, 226, 227, 247-

248, 250, 298, 352
Chutes and Ladders, 238 n.3, 251
CLASS framework, 235-236
Classroom Assessment Scoring System, 234, 

236, 237, 243-244, 299
Classroom context for instruction. See also 

Grade 1; Kindergarten; Mathematics 
instruction; Preschool programs

 emotional support, 236
 generalized teaching strategies, 241-242
 instructional opportunities, 235
 instructional supports, 237
 kindergarten, 239-242
 mathematics content, 235, 237-242
 noninstructional activities and time, 235
 organization and management, 236-237
 prekindergarten, 237-239
 teacher-child interactions, 235-237
Classroom Observation of Early 

Mathematics Environment and 
Teaching, 270-271, 272

Cognitive flexibility, 83
Cognitive foundations for early learning
 behavioral and attentional regulation 

and, 82-84, 85
 cardinality, 63, 71
 fraction representations, 61
 measurement, 61, 79-82, 84-85
 number understanding, 60-71, 84
 pattern finding, 69, 83
 Piaget’s theories, 60, 70, 72, 79-80, 

155-156
 preverbal number knowledge, 60-66
 proportional relations, 61, 82
 spatial thinking and geometry, 61, 71-

79, 84, 192-193

 universal starting points, 59-60, 85, 95, 
96, 104

 van Heile’s theories, 77
Cognitively Guided Instruction, 314
Colorado, 229
Comparisons, 30-31, 53, 97
 additive, 23, 33, 34, 231, 351
Competence and performance. See also 

Cognitive foundations for early 
learning; Learning disabilities; 
Number understanding or number 
sense

 activities in daily lives and, 100, 102-
104, 113

 automaticity, 128
 committee conclusions, 332-335
 English language learners, 100-101
 experiences and learning opportunities 

and, 100, 103-105, 333-334
 family role, 101-105, 113, 333-334
 fluency, 7, 25, 111, 125, 128, 138, 141, 

145, 153, 154, 156, 157, 158, 159, 
160, 166, 169, 250, 352

 gender and, 98-99
 individual variations in, 127-128, 154, 

157, 334-335
 international comparisons, 184, 192, 

273
 language/cultural influences, 98, 106-110
 parents’ knowledge and beliefs and, 102
 race/ethnicity and, 99-100
 socioeconomic status and, 1-2, 70, 96-

98, 103, 104-105, 334-335
Composing/decomposing
 activities, 248
 addition/subtraction situations, 23, 32-

33, 45-46, 51, 133, 231
 decimal system, 45-46
 defined, 352
 groups of groups, 49
 groups of groups of groups, 50
 and mathematical connections across 

content areas, 39-40, 45-46, 48-49, 
50, 194

 and measurement, 35, 39-40, 46, 202, 
206, 207, 360

 and multiplication/division, 45, 51-52
 numbers, 23, 32-33, 45, 48, 49-50, 154, 

157, 161, 164-165, 194, 231
 operations, 45
 reasoning processes, 35, 45-46, 179
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 shapes and objects, 35, 39-40, 46, 48-
50, 175, 177-179, 184, 185-188, 
189-190, 191, 194, 195, 206, 231, 
248

 standards of learning, 231, 337
 teaching-learning paths, 32, 154, 157, 

161, 164-165, 175, 177-179, 184, 
185-188, 189-190, 191, 194, 202, 
206, 207

 triads, 25, 160
 unitizing by grouping, 48-49, 207
Computational fluency, 111, 352
Computer manipulatives, 196
Conceptual subidizing, 23, 132-133, 141, 

142, 146, 150, 151, 152, 153, 154, 
155, 158, 159, 164, 166, 356

Connections across content
 arithmetic properties, 50-52
 cardinality, 23, 25-26, 130, 131, 139
 composing/decomposing and, 39-40, 45-

46, 48-52, 194
 in data analysis, number, and 

measurement, 53-55
 fractions, 52-53
 of number core, 138-140
Core Knowledge, 256, 273
Counting
 abstraction principle, 135, 136
 accumulator mechanism, 63, 351
 addition/subtraction operations, 25, 51, 

111, 130, 145, 148, 151, 152-153, 
154, 155, 157-158, 159, 160, 163, 
164, 166

 backward counting, 25, 26, 153
 cardinality principle, 31, 129, 130, 131, 

135, 139, 140, 147
 comparing collections, 30-31
 competence of preschool children, 61
 core content, 145
 cultural differences, 133
 defined, 25
 errors, 136-137, 153
 on fingers, 25, 67, 68, 70, 106, 130, 

131, 132, 133, 134, 141, 142, 152, 
157-158, 162

 games, 53, 113
 how-to-count principles, 135

 importance of fluency, 156
 instruction practices, 240
 language and, 30, 107-109, 140
 learning disabilities and, 111, 112
 money, 147
 nonverbal, 63
 one-to-one correspondence, 22, 24-25, 

129, 134-137, 144
 order irrelevance principle, 135, 136
 pattern finding and, 47, 49, 107, 156, 

164
 quantizing, 22, 26, 27, 30, 51
 skip counting, 25, 48, 55, 147, 148
 socioeconomic differences, 97
 of solution methods, 25
 stable order principle, 135
 subidizing and, 164
 unitizing, 45, 48, 147, 148
 what-to-count principles, 135, 136-137
Counting on, 25, 111, 113, 130, 151, 152-

154, 159-160, 163, 164, 166
Creative Curriculum, 256, 268, 269
Credentialing and licensure, 4, 101, 291, 

292, 301, 305, 315, 317-319, 320, 
342, 347, 352

Curriculum. See also Mathematics 
curriculum

 definitions, 227
 effectiveness research, 265-273
 integrated, 149, 227, 353

D

Data analysis, 53-55
Decimal system
 groups of groups, 49
 groups of groups of groups, 50
 language differences and, 106-108, 

109-110
 number word list and, 26-30, 64
 place values, 28, 29-30, 45, 48, 107, 

108, 148, 231, 355
 unitizing, 45, 48
Developmental dyscalculia, 112
Dynamic Indicators of Basic Early Literacy 

Skills, 128
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E

Early Childhood education (ECE) system. 
See Curriculum; Early childhood 
education teachers; Early childhood 
workforce; Grade 1; Instruction/
pedagogy; Kindergarten; Preschool; 
Standards for mathematics learning

 accountability systems, 16
 center-based care, 13-14, 15, 66, 67, 

123, 127, 129, 133, 137, 141, 155, 
158, 290, 291, 292, 293, 294, 307, 
318, 337, 338, 341

 costs of care, 13, 15
 demand for care, 15
 home-based care, 13-14, 289, 290, 291, 

292, 305, 307
 legislation and policy initiatives, 15-16
 opportunities to learn mathematics, 1-2
 state-funded preschool, 15
 variety of settings, 13-15
Early childhood education teachers. See also 

Professional development
 beliefs about early childhood education, 

295-297
 defined, 289-290, 352
 instruction impacts of beliefs and 

knowledge, 299-300, 309-310
 quality and effectiveness, 272, 305-307, 

356
 values and beliefs about math, 8-9, 297-

300, 309
Early Childhood Educator Professional 

Development Program, 303
Early Childhood Environment Rating Scale, 

234, 237, 242, 299
Early Childhood Longitudinal Study
 birth cohort, 13
 kindergarten cohort, 98, 233-234, 237, 

239, 247
Early childhood workforce. See also 

Professional development of 
workforce

 compensation, 291-293
 defined, 289, 352
 demographic characteristics, 290-291
 educational experience and background, 

291
 and mathematics, 297-300
 stability and turnover, 293-294
 work environment, 294-295

Early Head Start, 9
Early Reading First, 16
Economically disadvantaged children. See 

also Head Start
 competence in mathematics, 1, 2, 12, 

152, 154
 equity in early mathematics education, 

12-13, 15-16
 instruction strategies, 110, 154, 271, 

273, 296-298
 opportunities to learn mathematics, 1-2, 

13, 15
Education of teachers. See Formal 

education of workforce; Professional 
development of workforce

Education policies
 accountability systems, 16
 voluntary universal preschool, 15
Effortful control, 83
Emerging Academics Snapshot, 234, 238
English language learners, 100-101, 149, 

157
Equation writing, 33, 35, 44, 162-163
Equivalence classes, 63, 64, 71
Equivalence matches, 69
Even Start, 229
Ewing Marion Kauffman Foundation, 10
Executive function, 83-84, 243, 250, 334

F

False belief understanding, 83
Family role. See also Parents
 activities, 76, 102-104, 155, 343
 committee conclusions, 343-344
 math talk, 104
 resources, 344
 socioeconomic factors, 104-105, 

343-344
Feedback
 defined, 353
 encouragement and affirmation, 238, 

244, 245, 352
 importance and quality, 125, 169, 182, 

237, 243-244, 299
 instructional, 137, 353
 loops, 244-245, 352
 in professional development, 317, 320, 

347
 prompting thought processes, 245, 340, 

355
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 providing information, 127, 245, 248, 
253, 299, 355

 scaffolding, 182, 191, 203, 238, 243, 
244, 247, 249-250, 251, 255, 260, 
275, 355

 sources, 125
 training teachers in, 312
Fidelity of Implementation, 270
Finding a pattern. See Pattern finding
Flexible interview, 262-264
 organized systems, 263
 strengths and weaknesses, 263-264
Florida, 230, 232
Formal education of workforce
 academic content, 315
 associate degree programs, 303, 304, 

342
 bachelor’s degree programs, 304-305, 

342
 characteristics of high-quality 

experiences, 301-302
 committee conclusions, 341-343
 context for delivery, 302-305
 coursework, 316-317, 341
 credentialing and licensure, 4, 101, 291, 

292, 301, 305, 315, 317-319, 320, 
342, 347, 352

 definitions, 300
 degree requirements, 315
 faculty, 317
 field experiences, 317
 general landscape of, 303-304
 in-service, 3-4, 300, 301-302, 303, 305, 

307, 308, 310-314, 319, 320-321, 
342, 343, 346-347, 353

 and mathematics education for young 
children, 307-319

 outcomes of mathematics preparation, 
313-314

 pre-service, 300, 301-302, 303, 307, 
308, 309, 314-316, 317-318, 319, 
320-321, 342, 343, 346, 355

 and quality of teaching, 101, 305-307, 
313

 recommendations, 3-4
Formative assessment
 committee conclusions, 340
 defined, 255, 353
 and effective teaching and, 274, 275, 

340, 353
 and feedback, 244

 flexible interview, 262-264
 observation, 257-260
 rationale for, 227, 255-256
 research needs, 265
 tasks, 201, 203, 260-262
Foundational content
 cardinality, 22, 23, 25-26, 31, 32, 34, 

36, 53, 336
 committee conclusions, 335-337
 geometry/measurement content, 35-42, 

336-337
 mathematical connections, 48-55, 337
 mathematical process goals, 42-47, 337
 number content, 22-35, 336-337
 pattern finding, 46-47, 48, 49, 122, 125, 

241, 266, 337
Fractions, 7, 35, 36-37, 40, 46, 52-53, 61
Freudenthal, Hans, 175

G

Gender differences
 and equity in education, 182
 spatial performance, 74, 76, 182
Geometry. See also Shapes and objects; 

Space; Spatial thinking
 achievable and foundational thinking, 

184-185
 computer use, 196
 defined, 353
 development of, 71-79
 foundational content, 37-42, 184-185
 importance, 2, 124-125, 175
 instruction practices, 240-241
 instructional strategies, 191-196
 manipulatives, use of, 195, 196
 pictures and diagrams, 195-196
 preschool curriculum, 184
 standards, 230-232
 teacher’s knowledge of, 37
 teaching/learning paths, 184-196
 vocabulary, 75-76
Georgia, 15, 230, 232-233
Good Start, Grow Smart, 9, 16, 303
Grade 1
 cardinality, 147, 148
 counting fluency, 163-164
 decimal system, 32, 148
 number core teaching-learning path, 

130, 147-148
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 relations/operations teaching-learning 
path, 32, 130, 151, 152-153, 
163-165

Graphs/graphing, 54-55, 161, 168, 208

H

Head Start, 9, 13, 14, 15, 83, 96, 105, 229, 
251, 268, 271, 273, 275, 290, 291, 
292, 296, 303, 304, 337, 346

Head Start Act, 15
Head Start Family, 347-348
Head Start Impact Study, 271
Heads-to-Toes task, 83-84
High/Scope, 256, 268, 269

I

Individuals with Disabilities Education Act, 
229

Infants
 accumulator mechanism, 63, 351
 addition/subtraction transformation, 60, 

65, 66
 cardinality concepts, 63
 large set size discrimination, 60, 63
 measurement, 61-62, 66, 79, 82
 number concept, 60, 63-64, 66, 95
 numerical order relations, 65-66
 small set size discrimination, 60, 61-63, 

66
 spatial thinking, 72-73, 75, 78
Informal knowledge of young children, 299
Inhibitory control skills, 83, 84
Instruction/pedagogy. See also Mathematics 

instruction
 defined, 226, 353
 direct, 226, 289, 352
 explicit, 104, 110, 226, 352
Instructional supports. See also Feedback
 concept development, 244
 defined, 353
 effectiveness, 147, 243-245
 language modeling, 237, 353
 preschool and kindergarten, 147, 237
 scaffolding, 182, 191, 203, 238, 243, 

244, 247, 249-250, 251, 255, 260, 
275, 355

Intelligence, 83, 84, 250, 266

Intentional teaching
 approaches, 267, 340
 benefit to children of low socioeconomic 

status, 12-13
 defined, 226, 353
 effectiveness, 194, 227, 237, 273, 340
 and formative assessment, 227
 mathematizing play experiences, 104, 

250
 professional development needs, 3-4, 

342, 346-347

K

Kindergarten
 cardinality, 145, 146, 151
 classroom activities, 234-235
 classroom organization and 

management, 236-237
 compositions/ decompositions, 160-161, 

178-179, 187, 191, 207
 counting correspondences, 136, 144, 

145, 146-147
 emotional support, 236
 equation writing, 162-163
 instructional supports, 147, 237
 math instruction, 239-242
 measurement, 161, 202, 207
 money understanding, 147
 number core teaching-learning path, 

130, 136, 145-147
 number word list, 146-147, 160
 operations teaching-learning path, 130, 

151, 154, 159-163
 relations teaching-learning path, 130, 

151, 161
 shapes, 178-179, 187, 190
 spatial relations, 178-179, 187, 191
 standards for learning, 147, 230-233
 teacher-child interactions, 235-237
 teen numbers, 146-147
 vocabulary, 190
 written number symbols, 138, 145, 

146-147

L

Language differences
 and base-10 structure in problem 

solving, 106, 109-110
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 Chinese, 106-107, 108, 109, 110, 143
 counting, 27, 106, 107-109
 French, 110
 Japanese, 108, 110, 133
 Korean, 75, 108, 110, 247
 and mathematical learning, 12, 98
 morphological markers, 106, 109, 354
 number names, 27, 106-107
 representations for numbers, 106-107
 Spanish, 100, 101, 106, 107
 and spatial mathematical skills, 75
 Swedish, 110
Language (mathematical) modeling, 237, 

353. See also Math talk
Learning disabilities
 characteristics, 111-112
 developmental dyscalculia, 112
 helping high-risk children, 112-113
 prevalence, 110
 visual/spatial deficits, 209-210
Learning trajectories. See Teaching-learning 

paths
Legislation, 15-16
Low-income. See Economically 

disadvantaged children

M

Manipulatives
 classroom practices, 239, 240-241, 248, 

251-252
 counting, 240, 252, 261
 cultural tools, 203
 defined, 353
 effectiveness, 252
 in family settings, 343
 geometric, 179, 180, 183, 191, 194, 

195, 240, 248, 356, 357
 measurement, 199, 203, 207, 208, 209, 

240-241
 spatial visualization and imagery, 183, 

203
 virtual, 196, 248, 253, 356-357
Map use, 74-75, 82
Math talk, 43, 44, 104, 157, 245-246, 249, 

340, 343
Mathematical connections. See Connections 

across content
Mathematical process goals
 communicating, 42, 43
 connecting, 42, 43

 math talk, 43, 44
 mathematizing, 43-44, 54, 134, 149, 

150-151, 165, 181, 196, 250, 256, 
257, 274, 334, 337, 354, 355

 pattern finding, 43
 problem solving, 42, 43-44, 103, 108, 

109
 reasoning, 42-44
 representing, 21, 35, 42-43, 44, 332, 

337
 specific reasoning processes, 44-47
 standards, 42, 232-233
Mathematics curriculum
 automatized knowledge, 83, 100
 committee conclusions, 338-340
 effectiveness research, 2, 265-266, 

269-271
 embedded (secondary), 2, 227, 238, 248, 

269, 275, 316, 339, 355
 executive function skills, 83
 focused time, 2, 124, 227, 238, 248, 

269, 271, 273, 275, 313, 339, 340, 
352, 355

 guiding principles, 273-274
 integrated, 2, 129, 130, 145, 146, 147, 

148, 149, 166, 198, 227, 238, 239, 
256, 267-268, 269, 339

 interventions for economically 
disadvantaged children, 271-273

 NAEYC and NCTM position statement, 
122-123

 NCTM standards, 122
 resources, 267-268
Mathematics instruction. See also 

Classroom context for instruction; 
Curriculum; Instructional supports

 book reading, 254, 339
 committee conclusions, 338-340
 computers, 252-254
 concrete materials and manipulatives, 

196, 251-252
 developmentally appropriate practice, 9, 

254-255, 268, 270, 296, 298-299, 
300

 direct, 226, 297
 effective strategies, 191-195, 242-254, 

272, 339-340
 explicit, 104, 110, 169, 208, 226
 grouping strategy, 247, 248
 guiding principles, 273-274
 instructional supports, 243-245
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 kindergarten practices, 239-242
 math talk, 157, 245-246, 249
 movement to engage children, 253-254
 opportunities to learn, 1-2
 pattern finding, 241, 242, 246, 248, 

249, 260, 261
 play, 104, 247-251, 339
 preschool practices, 237-239, 242, 

299-300
 teacher-guided, 225-226, 345, 356
 teacher-initiated learning experiences, 

225-226, 356
 teacher pedagogical beliefs and 

knowledge, 299-300
Mathematizing, 43-44, 54, 134, 149, 150-

151, 165, 181, 196, 250, 256, 257, 
274, 334, 337, 354, 355

Measurement
 achievable and foundational goals, 201, 

202, 205
 accumulation of distance, 360
 addition/subtraction, 80
 additivity, 360
 area, 35, 36, 37, 39, 46, 49, 53, 61-62, 

65, 66, 79, 177, 179, 190, 201-204, 
205, 207, 209-210, 354, 361

 cardinality and, 36, 53
 cognitive foundations, 79-82
 compositions and decompositions, 35, 

39-40, 46, 202, 206, 207, 360
 concepts of, 359-361
 conservation of length, 359
 conventional, 80-82
 counting and, 81, 198, 204
 and data analysis, 53-55
 defined, 354
 development of, 79-82, 196-197
 equal partitioning, 46, 198, 201, 204, 

206, 359-360, 361
 equivalence/nonequivalence, 80-81
 foundational content, 36-37, 198
 and fractions, 36-37, 52-53
 importance, 2, 124-125
 infants, 61-62, 66, 79, 82
 instructional strategies, 80-82, 199-201, 

207-210
 language of, 205-206, 207-208
 length, 36, 37-38, 45, 46, 50, 52-53, 55, 

61-62, 66, 79, 80-81, 197-201, 207-
209, 359

 manipulatives, 203-204

 and number, 52-63
 number lines, 168
 number-measurement relation, 360-361
 objects and spatial relations, 205-206, 

207
 origin, 360
 Piaget’s theories, 79-80, 199, 200
 proportional reasoning, 75, 82
 relating parts and wholes, 202, 206, 207
 relative coding, 46, 79
 ruler use, 53, 80, 81, 167, 168, 197, 

198, 199-200, 201, 202, 207, 208, 
209, 240-241, 267, 360, 361

 scaling, 75, 82, 182
 socioeconomic differences, 96
 and spatial structuring, 82, 189, 190, 

201-204, 209, 361
 standards, 230-232
 teaching-learning paths, 205-210
 thinking about parts, 202, 206, 207
 transitivity, 197, 208, 358, 359, 361
 units and unit iteration, 36, 37, 45, 46, 

53, 80-82, 161, 197, 198, 199, 204, 
206, 207, 208-209, 360

 visual/holistic thinking, 202, 206
 visual/spatial deficits and, 209-210
 volume, 35, 36-37, 39, 40, 50, 63, 71, 

79, 190, 204-205, 210, 354, 361
 zero point, 200, 208
Memory
 deficits, 112
 faulty, 256
 working, 67, 83, 84, 361
Michigan, 230
Mississippi, 15
Multiplication/division, 30, 34, 45, 46, 48, 

50, 51-52, 55, 190, 203
Multiplicative comparisons, 34
Multi-State Study of Preschool, 233-237, 

239

N

National Assessment of Educational 
Progress, 100

National Association for the Education of 
Young Children (NAEYC), 9, 122, 
228, 268, 275, 296, 307-308, 309, 
318, 319

National Board for Professional Teaching 
Standards, 318-319
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National Center for Early Development and 
Learning, 233-237, 239, 268

National Council for Accreditation of 
Teacher Education, 314, 315, 316, 
318

National Council of Teachers of 
Mathematics (NCTM), 9, 42, 55, 
122-123, 228, 230, 239, 241, 307-
308, 309, 310, 335

National Education Goals of 1990, 15
National Institute of Child Health and 

Human Development, 10
National Reporting System, 9
New Jersey, 230, 242
New Mexico, 229
New York, 230, 233
No Child Left Behind (NCLB) Act, 15, 16, 

303
North Carolina, 230, 232, 294
Number competencies, 95, 96, 112, 350, 

354
Number content. See also Number core; 

Operations core; Relations core
 importance, 2, 124-125
 instruction practices, 239-240
 standards, 230-232
Number core
 cardinality, 22, 23, 25-26, 34, 129, 132-

134, 140, 142, 145, 146, 147, 148
 composing/decomposing, 23, 32-33, 45, 

48, 49-50, 154, 157, 161, 164-165, 
194, 231

 coordinating components of, 23, 25, 52-
53, 131, 138-140

 counting correspondences, 22, 23, 24-
25, 26, 129, 134-137, 141, 144, 145, 
146, 147, 148

 counting out n things, 141, 145
 and data analysis, 53-55
 decimal system, 22, 24, 26-30, 48
 foundational content, 22-30
 importance, 124-125
 integrating components of, 145-148
 mathematical perspective, 24-30
 number word list, 22, 23, 24, 25-30, 

132, 134, 141, 142-143, 144, 145, 
146

 overview, 22-30
 quantity, 22, 24
 subitizing, 23, 25, 130, 131, 141, 146
 teaching-learning paths, 129-148

 teen numbers, 146-147
 written number symbols, 22, 23, 24, 

26-30, 129, 138, 141, 144-145, 146, 
147, 148

Number facts, 25
Number lines, 53, 111, 113, 167-168, 251
Number names. See Number word list
Number representation. See also Written 

number symbols
 analog magnitude system, 63, 70, 112, 

168, 351
 approximate, 112
 decimal system and, 27, 109-110
 fractions, 61
 mental, in preschool children, 66-71, 

138
 object file system, 62, 63, 66, 70, 354
Number sense. See also Number 

understanding or number sense
 defined, 95, 354
Number triads
 composed/decomposed, 25, 32-33, 158-

159, 160-161
 embedded, 23, 159
Number understanding or number sense, 

142, 230, 231, 354. See also 
Competence and performance; 
Number competencies

 addition/subtraction transformations, 
67, 96

 approximation, 61, 63, 66, 68, 70, 84, 
98, 112, 351

 conceptual, 63-64
 infants, 60, 61-66, 95
 kindergarten, 96
 learning disabilities and, 112-113
 mental number representation, 66-71
 order relations, 65-66
 preschool children, 66-71, 95
 preverbal, 60-66
 set comparisons, 96
 set size discrimination, 60, 61-66, 67-70, 

96, 98
Number word list
 activities, 136-137
 and addition/subtraction situations, 25, 

160, 166-168
 and cardinality, 25-26, 31, 32, 129, 132, 

147, 148
 core content, 24-30, 134, 142-143
 decade words, 147
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 importance of fluency, 25, 66
 language/cultural differences, 27, 70, 

106-107, 142-143
 number line distinguished from, 167-168
 and one-to-one counting 

correspondence, 134, 138, 144
 parental modeling of, 104
 pattern finding in, 47, 107, 108, 131, 

134, 141, 142-143, 144, 146, 147, 
148

 as representational tool, 160, 166-168
 socioeconomic differences in 

understanding, 97-98
 teaching-learning paths, 129, 132, 134, 

138, 141, 142-143, 144, 145, 146
 unitizing, 166
 verbal knowledge, 140
 and written symbols in decimal system, 

26-30, 64
Number Worlds, 256, 263, 271
Numerals. See also Written number symbols
 Arabic, 106, 107, 108, 109
 defined, 27, 354
Numerosity, 23, 61, 62, 63, 64, 65, 71, 

134, 156
 defined, 354
 matching task, 67-68, 69, 97-98

O

Object file system, 62, 63, 66, 70, 354
Observational assessment, 257-260
 organized systems of, 259
 strengths and weaknesses, 259-260
Ohio, 230, 233
Oklahoma, 15
One-to-one counting correspondences
 accuracy, 135
 to cardinality, 22, 24-25, 129, 134-137, 

144
 defined, 354
 number word list and, 134, 138
 set size and, 135
 teaching-learning paths, 129, 132, 134-

137, 138-139, 141, 144, 146, 147, 
148

Operations core. See also Addition/
subtraction; Multiplication/division

 change situations, 23, 32-34, 149

 comparison situations, 23, 30-31, 33, 
151

 compose/decompose numbers, 23, 25, 
32-33, 158-159, 160-161

 computational fluency, 111
 connections across core, 34
 counting on, 25, 111, 113, 130, 151, 

152-154, 159, 160, 163, 164, 166
 embedded number triads, 23, 33, 158-

159, 166
 importance, 124-125
 mathematizing real-word situations, 

149, 150-151, 165
 number list fluency and, 25
 overview, 23
 put together/take apart situations, 23, 

32-33, 34-35, 149, 355
 socioeconomic differences, 154, 159
 standards, 230-232
 subidizing, 130, 150, 151, 152, 154, 

155, 158, 159
 teaching-learning paths, 130, 149, 150-

154, 155, 157-161, 162-165, 166
Order relations, 65-66, 149, 156, 166, 167. 

See also Relating and ordering
Ordinal numbers, 167
Ordinal position, 63
Organizing information, 46-47

P

Parents. See also Family role
 engagement in mathematics activities, 

102-104
 knowledge and beliefs about 

mathematics, 8, 102, 105, 344
 perceptions of children’s abilities, 104
 spatial activities and language, 76, 78, 

99
Pattern finding. See also Subitizing
 activities, 46-47, 102, 156, 189-190, 

194, 196, 248
 in addition/subtraction, 159-160
 attribute blocks, 47, 183-184, 209-210, 

248, 351
 cognitive foundations, 69, 83
 computer manipulatives, 196
 conceptual subitizing, 132-133, 142, 

153, 155, 158, 356
 counting, 47, 49, 107, 156, 164
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 defined, 352
 foundational content, 46-47, 48, 49, 

122, 125, 241, 266, 337
 informal knowledge of young children, 

299
 instruction practices, 241, 242, 246, 

248, 249, 260, 261
 in multiplication tables, 52
 in number words, 47, 107, 108, 131, 

134, 141, 142-143, 144, 146, 147, 
148

 reasoning processes, 43, 46-47
 shapes, 47, 176, 177-179, 183-184, 189-

190, 191, 194, 196, 351, 355, 357
 spatial visualization, 249, 357
 standards of learning, 238 n.3
 structural relationships, 47, 48, 52
 in teaching-learning paths, 122, 125, 

131, 132-133, 134, 141, 142-143, 
144, 146, 147, 148, 153, 155, 156, 
158, 159-160, 164, 176, 177-179, 
183-184, 189-190, 191, 194, 196

 unitizing, 45, 48
Perceptual subidizing, 131, 132, 164, 166, 

356
Performance in mathematics. See 

Competence and performance
Piaget’s theories and perspectives, 60, 61, 

67, 70, 72, 76, 77, 79-80, 155, 156, 
166, 183, 199, 200, 255-256, 257, 
258, 260, 261-262, 264, 298, 359, 
361

Place values, 28, 29-30, 45, 48, 107, 108, 
148, 231, 355

Play
 block building, 248-249
 games, 251
 mathematical, 149, 251
 practice during, 250
 sociodramatic, 249-250
Policies. See Education policies
Pre-K Mathematics, 311
Preschool children. See also Age 2-3; Age 4
 attitudes about mathematics, 12
 calculation tasks, 67-68, 69
 map use, 74-75, 82
 mathematics curricula, 184
 mental number representation, 66-71
 numerosity matching task, 67-68, 69, 

97-98

 set size discrimination, 67-70
 shape discrimination, 77
 spatial thinking, 73-75
Preschool Curriculum Evaluation Research 

Study, 269, 270
Preschool Embedded Figures Test, 73-74
Preschool Mathematics Curriculum, 270
Preschool programs
 classroom activities, 234-235
 classroom organization and 

management, 236-237
 economically disadvantaged children 

targeted, 15
 emotional support, 236
 equity in, 124
 instructional supports, 237
 math instruction, 124-125, 237-239, 

242
 standards of learning, 228-230
 state-funded, 15, 228-230, 233-242
 teacher-child interactions, 235-237
 voluntary universal, 15
Problem solving, 43, 44, 46, 51, 100, 109-

110, 122, 133, 142, 159, 165, 166, 
169, 194-195, 228, 229, 239, 247, 
251, 252, 255, 273, 274, 297, 299, 
337

Process. See Mathematical process goals
Professional development of workforce. See 

also Formal education of workforce
 access, 303
 assessing competence, 315-316
 defined, 355
 inadequacy in mathematics, 2
 preparing teachers to promote 

mathematics development, 316-319
 training, 2, 258-259, 270, 291, 292, 

294-295, 298, 300, 301, 302, 303, 
305, 306-307, 309, 310, 311, 312, 
313, 314, 318, 341, 342, 343, 348, 
356

Project IMPACT, 314

Q

Quantizing, 24
 auditory, 133
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R

Race/ethnicity
 and competence and performance, 

99-100
 ECE workforce, 14
Reading First, 16
Reasoning processes
 “big ideas,” 44-45
 composing/decomposing, 35, 40, 45-46, 

179
 and conceptual development, 244
 general, 40, 42-44, 184
 geometric and spatial, 36, 76-77, 83, 

188, 206, 230, 231, 337
 goals, 42-44, 122, 337, 345
 NCTM process standards, 42
 organizing information, 46, 47
 pattern finding, 43, 46-47
 prompting for, 245, 256, 355
 proportional thinking, 82
 relating and ordering, 46, 83
 representing, 42-43, 44
 specific, 40, 44-47
 standards of learning, 229, 230, 231, 

233
 teachers’ pedagogical beliefs, 297
 teaching-learning paths, 184, 197, 199, 

206
 transitive, 206
 unitizing, 45
Recommendations
 credentialing of educators (7), 4, 347
 curricula and instruction (3), 3, 345
 family-community partnerships (8), 4, 

347-348
 informal learning supports (9), 4, 348
 instructional supports (5), 3, 346
 math experiences in early childhood (2), 

3, 345
 national initiative (1), 3, 345
 professional development (6), 3-4, 

346-347
 standards of learning (4), 3, 346
Reggio Emilia, 259, 267
Relating and ordering, 23, 37-38, 46, 61, 

97, 337, 355
Relating parts and wholes, 178, 179, 185, 

187, 188, 189-190, 191, 193, 202, 
206, 207, 355

Relations core
 comparison situations, 30-31, 33, 34, 

149, 154-155, 161-162
 length or density strategies, 23, 130, 

149, 150, 154, 155, 156
 matching and counting strategies, 155, 

156, 161
 overview, 23
 socioeconomic differences, 97
 subidizing, 150, 151, 154, 166
 teaching-learning path, 130, 149, 

150, 151, 154-157, 161-162, 165, 
166-168

 vocabulary, 156-157, 161
Representing relationships, 110, 165, 

177, 187, 189, 202, 206, 267, 332, 
337. See Number representation; 
Numerals; Written number symbols

 data analysis, 54-55
 mathematizing, 43, 44
 in measurement, 53, 55
 as reasoning process, 42-43, 44
Research needs
 curriculum evaluation, 349
 English language learner needs, 348
 instruction practices, 348-349
 learning disabilities, 349-350
 parental involvement, 349
 teacher preparation, 349
Research on mathematics learning
 curriculum effectiveness, 265-273
 evidence base, 12
 NRC reports on early development and 

learning, 9-10
Rightstart program, 271, 273
Rod-and-Frame Test, 73

S

Scaffolding, 182, 191, 203, 238, 243, 244, 
247, 249-250, 251, 255, 260, 275, 
355

Self-regulation, 83-84, 250, 264
Set size discrimination, 60-63
Shapes and objects. See also Geometry
 2-D, 37-38, 177-179, 185, 188, 190
 3-D, 38-39, 40, 184, 185, 188, 190
 as abstractions, 35-36
 activities, 193-195
 area of, 35, 39-40, 49
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 categorization, 180
 characteristics, 35, 37-39, 180, 192-193
 cognitive foundations, 76-78, 179-180
 composing/decomposing, 35, 39-40, 46, 

48-50, 52, 175, 177-179, 184, 185-
188, 189-190, 191, 194, 195, 206, 
231, 248, 336

 concept development, 179-180, 192-193
 dimensional adjectives, 78
 discrimination, 76-79
 faces on, 39
 manipulatives, 180, 183-184
 pattern finding, 47, 176, 177-179, 183-

184, 185, 189-190, 191, 194, 196, 
351, 355, 357

 relating parts and wholes, 176, 178, 
179, 185, 187, 188, 189-190, 191, 
193, 355

 steps in thinking about, 176-179
 teaching-learning paths, 185, 186-187, 

188, 190, 191-195
 thinking about parts, 164, 176, 177, 

178, 179, 185, 186, 187, 188, 189, 
193, 356

 vertices, 38, 39, 178, 188
 visual/holistic thinking, 176, 177, 178, 

185-189, 357
Socioeconomic status. See also Economically 

disadvantaged children
 and cardinality tasks, 103
 and child care arrangements, 14
 and learning opportunities, 104-105
 and number understanding, 70
 and spatial performance, 74
 and teachers’ values and beliefs about 

instruction, 296-299
Space
 2-D, 40-41, 177-179
 3-D, 40-41, 50
 Cartesian coordinates, 35, 49, 50
 models for, 41
 movement through, 41-42, 52, 178, 183, 

189, 248, 252
Spatial language, 75-76, 77-78, 99, 181, 

185
Spatial orientation, 41, 73, 74, 75, 138, 

177, 178, 180-182, 188, 189, 192, 
194, 336, 355, 357

Spatial relations, 185, 188-189, 191
 in 2-D space, 177-179
 categorization, 72-73, 75, 77

 foundational content, 3, 35, 41-42
 vocabulary, 77, 185, 186
Spatial structuring, 35, 40-42, 50, 180-184, 

189, 190, 201-204, 209, 361
Spatial thinking. See also Geometry; Shapes 

and objects
 activities and tests, 72, 73-74, 76, 77, 

99, 183-184
 cognitive foundations, 71-79, 180-182
 foundational content, 42-43
 gender differences, 74, 76, 98-99, 182
 importance, 175
 infants, 72-73, 75, 78
 language (spatial) use and, 75-76, 77-78, 

99, 181
 manipulatives, 183
 and map use, 74-75, 182
 and math and science achievement, 71
 mental functions in, 71
 mental representations, 181-182
 mental transformation and superposition 

of shapes, 42-43, 73-75, 78, 99, 103, 
183, 203, 356

 modeling, 182
 perspective changes, 35, 72, 74, 182
 Piaget’s view, 72
 preschool, 75-79
 socioeconomic differences, 74, 96
 symbolic systems, 72
 teaching-learning paths, 185, 186-187, 

188-189, 191
 visualization and imagery, 39, 73-74, 

180, 183-184, 230, 231, 249, 336, 
355, 357

SRA Real Math Building Blocks, 311
Standards for mathematics learning
 committee conclusions, 338-339
 Curriculum Focal Points, 55, 123, 125, 

228, 229, 230, 335
 early learning (prekindergarten), 9, 

228-230
 kindergarten, 230-233
 monitoring implementation, 229
 Principles and Standards for School 

Mathematics, 122, 123, 228, 229, 
231, 233

 process strands, 232-233
State-wide Early Education Programs 

(SWEEP) Study, 234
Storytelling Sagas, 254
Structural relationships, 47, 48, 52
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Subitizing
 auditory, 133, 164
 and cardinality, 132, 134, 141, 142, 

146, 150, 151, 155
 conceptual, 23, 132-133, 141, 142, 146, 

150, 151, 152, 153, 154, 155, 158, 
159, 164, 166, 356

 for counting on, 164
 defined, 25, 132, 356
 neurological origins, 112
 in number core, 23, 25, 130, 131, 141, 

146
 in operations core, 130, 150, 151, 152, 

154, 155, 158, 159
 ordinal numbers, 167
 perceptual, 131, 132, 164, 166, 356
 range, 63
 in relations core, 150, 154, 166
 teaching-learning paths, 130, 131, 132-

134, 141, 142, 146, 150, 151, 152, 
153, 154, 155, 158, 159, 164, 166

Symmetry, 51, 52, 134, 179, 180, 185, 195, 
196, 231

T

Tangrams, 179, 183, 191, 194, 248, 356, 
357

Tasks
 assessment strategy, 260-262
 organized systems of, 261
 strengths and weaknesses of, 261-262
Teacher-child interactions
 classroom organization and 

management, 236-237
 emotional support, 236
 preschool and kindergarten, 235-237
Teacher Education Assistance for College 

and Higher Education Grant 
Program, 303

Teacher-initiated experiences
 defined, 225-226
Teachers. See Early childhood education 

teachers
Teaching-learning paths. See also Ages 2-3; 

Age 4; Grade 1
 cardinality, 129, 130, 131, 132-134, 

135, 139-140, 141, 142, 145, 146, 
147, 148, 150, 151, 154, 155, 169

 composition/decomposition, 32, 154, 
157, 161, 164-165, 175, 177-179, 
184, 185-188, 189-190, 191, 194, 
202, 206, 207

 connections among core component, 23, 
25-26, 34, 39-40, 45-46, 48-55, 129, 
130, 131, 138-140, 337

 context for, 129
 counting on to make a solution, 145, 

148, 151, 152-153, 154, 155, 156, 
157-158, 159-160, 163-165, 166

 counting out n things, 141, 145
 defined, 121, 353-354
 equation writing, 158-159, 162-163
 integrating components of, 145, 146-148
 number core, 129-148
 number word list, 129, 132, 134, 138, 

141, 142-143, 144, 145, 146
 one-to-one counting correspondences, 

129, 132, 134-137, 138-139, 141, 
144, 146, 147, 148

 operations core, 130, 149, 150-154, 
155, 157-161, 162-165, 166

 overlearning, 128, 138, 145
 pattern finding, 122, 125, 131, 132-133, 

134, 141, 142-143, 144, 146, 147, 
148, 153, 155, 156, 158, 159-160, 
164, 176, 177-179, 183-184, 189-
190, 191, 194, 196

 problem-solving strategies, 150-154, 
168-169

 relations core, 130, 149, 150, 151, 154-
157, 161-162, 165, 166-168

 shapes and objects, 185, 186-187, 188, 
190, 191-195

 spatial relations, 185, 186-187, 188-189, 
191

 subitizing, 130, 131, 132-134, 141, 142, 
146, 150, 151, 152, 153, 154, 155, 
158, 159, 164, 166

 teen numbers, 146-147
 written number symbols, 53, 70, 112-

113, 129, 138, 141, 144-145, 146-
147, 148

Teaching to the Big Ideas, 314
Technology-enhanced, Research-based, 

Instruction, Assessment, and 
professional Development (TRIAD) 
model, 311, 312

Test of Early Mathematics Ability, 273
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Texas, 230, 233
Tools of the Mind, 249-250

U

Unitizing, 337
 in counting, 23, 45, 48, 147, 148
 decimal system, 45, 48
 defined, 356
 by grouping, 48-49, 207
 in measurement, 36, 37, 45, 46, 53, 

80-82
 number words, 166
 and pattern finding, 45, 48
U.S. Department of Education, 269
U.S. Department of Health and Human 

Services, 10
 Office of Head Start, 9, 10

V

Virginia, 230, 232
Visual/spatial deficits and, 209-210
Volume, 35, 36-37, 39, 40, 50, 63, 71, 79, 

190, 204-205, 210, 354, 361
Vygotsky’s theories, 200, 203, 249-250, 

255, 260

W

Washington, DC, 15
What Works Clearinghouse, 312, 313
Workforce. See Early childhood workforce
WPPSI-3 Block Design subtest, 78
Written number symbols
 errors in writing, 147
 number words and, 26-30, 64
 place value cards, 148
 teaching-learning paths, 53, 70, 112-

113, 129, 138, 141, 144-145, 146-
147, 148
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